4.8 Article

High-Throughput Flow-Through Direct Immunoassays for Targeted Bacteria Detection

期刊

ANALYTICAL CHEMISTRY
卷 93, 期 44, 页码 14586-14592

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.1c02867

关键词

-

资金

  1. U.S. Army Combat Capabilities Development Command Soldier Center [W911QY-18-2-0006, PR2021_98039]

向作者/读者索取更多资源

This study introduces a novel flow-through direct immunoassay (FTDI) methodology for targeted detection of bacteria in liquid samples, providing rapid and sensitive detection, as well as ensuring accuracy and precision in various types of samples.
Regulatory authorities require analytical methods for bacteria detection to analyze large sample volumes (typically 100 mL). Currently only the Membrane Filtration and the Most Probable Number assays analyze such large volumes, while other assays for bacteria detection (ELISA, lateral flow assays, etc.) typically analyze volumes 1000 times smaller. This study describes flow-through direct immunoassays (FTDI), a new methodology for the targeted detection of bacteria in liquid samples of theoretically any volume. Flow-through direct immunoassays are performed in fluid-permeable microwells (e.g., wells of a filter well plate) that have a membrane on their bottom where the bacteria are trapped before their detection using a direct immunoassay. Two versions of FTDI assays for the detection of E. coli in 10 mL of sample were developed. A rapid FTDI assay that can be completed in less than 2.5 h can detect E. coli bacteria in levels down to 17 CFU/mL, and an ultrasensitive FTDI assay that employs an additional bacteria culturing step to boost the sensitivity can detect E. coli bacteria in levels lower than 1 CFU/mL in less than 5.5 h. All the steps of the assays, including the immunoassay steps, the culturing step, and the analytical signal measurement step are performed inside the well plate to decrease the chance of contamination and ensure a safe, easy process for the user. The assays were assessed and validated in tap water, river water, and apple juice samples, and the results suggests that the assays are robust, precise, and accurate. When the assays are performed in 96-well filter plates, a filter well plate vacuum manifold and a multichannel peristaltic pump are also used, so multiple samples can be analyzed in parallel to allow highthroughput analysis of samples.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据