4.8 Article

MoS2-Covalent Organic Framework Composite as a Bifunctional Supporter for the Determination of Trace Nickel by Photochemical Vapor Generation-Microplasma Optical Emission Spectrometry

期刊

ANALYTICAL CHEMISTRY
卷 94, 期 4, 页码 2288-2297

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.1c05002

关键词

-

资金

  1. National Natural Science Foundation of China [21922402, 21874017, 21727811]
  2. Fundamental Research Funds for the Central Universities [N2005027]

向作者/读者索取更多资源

A MoS2-covalent organic framework (COF) composite is used as a bifunctional supporter for efficient sample separation/enrichment and photochemical vapor generation (PVG) enhancement. The system shows highly selective and sensitive detection of heavy metals in environmental water. This method has great practical value for complex sample analysis.
A microplasma-based optical emission spectrometry (OES) system has emerged as a potential tool for field analysis of heavy metal pollution due to its features of portability and low energy consumption, while the development of an efficient sample introduction approach against matrix interference is crucial to meet the requirements of complex sample analysis. Herein, a MoS2-covalent organic framework (COF) composite serves as a bifunctional supporter for efficient sample separation/enrichment and photochemical vapor generation (PVG) enhancement, thereby achieving highly selective and sensitive detection of heavy metals in environmental water by dielectric barrier discharge (DBD) microplasma-OES. With trace nickel analysis as a model, the MoS2-COF composite with a large specific surface area and a porous structure can not only efficiently separate and enrich nickel ions from a sample matrix through electrostatic interaction and coordination to reduce the interference of coexisting ions but also significantly improve the subsequent PVG efficiency due to the formed heterojunction and more negative reduction potential. Under optimized conditions, a linear range of 0.1-10 mu g L-1 along with a detection limit of 0.03 mu g L-1 is obtained for nickel. Compared with direct PVG, the tolerance to coexisting ions is greatly enhanced, and the detection limit is also improved by 43-fold. The accuracy and practicability of the present PVG-DBD-OES system are verified by measuring several certified reference materials and real water samples. MoS2-COF as a bifunctional supporter promotes the performance of the PVG-DBD-OES system in terms of anti-interference ability and detection sensitivity, especially for robust and efficient on-site analysis of complex samples.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据