4.7 Article

In-solution buffer-free digestion allows full-sequence coverage and complete characterization of post-translational modifications of the receptor-binding domain of SARS-CoV-2 in a single ESI-MS spectrum

期刊

ANALYTICAL AND BIOANALYTICAL CHEMISTRY
卷 413, 期 30, 页码 7559-7585

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s00216-021-03721-w

关键词

Buffer-free digestion; RBD; SARS-CoV-2; Modified cysteine; Hydrophilic peptides

资金

  1. National Science and Technology Program of the Cuban Ministry of Science and Technology

向作者/读者索取更多资源

Subunit vaccines based on the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 are a promising strategy to fight the COVID-19 pandemic. Mass spectrometry analysis of the protein structure is necessary, and a non-conventional digestion protocol can improve sequence coverage and detect hydrophilic regions.
Subunit vaccines based on the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 provide one of the most promising strategies to fight the COVID-19 pandemic. The detailed characterization of the protein primary structure by mass spectrometry (MS) is mandatory, as described in ICHQ6B guidelines. In this work, several recombinant RBD proteins produced in five expression systems were characterized using a non-conventional protocol known as in-solution buffer-free digestion (BFD). In a single ESI-MS spectrum, BFD allowed very high sequence coverage (>= 99%) and the detection of highly hydrophilic regions, including very short and hydrophilic peptides (2-8 amino acids), and the His(6)-tagged C-terminal peptide carrying several post-translational modifications at Cys(538) such as cysteinylation, homocysteinylation, glutathionylation, truncated glutathionylation, and cyanylation, among others. The analysis using the conventional digestion protocol allowed lower sequence coverage (80-90%) and did not detect peptides carrying most of the above-mentioned PTMs. The two C-terminal peptides of a dimer [RBD(319-541) -(His)(6)](2) linked by an intermolecular disulfide bond (Cys(538)-Cys(538)) with twelve histidine residues were only detected by BFD. This protocol allows the detection of the four disulfide bonds present in the native RBD, low-abundance scrambling variants, free cysteine residues, O-glycoforms, and incomplete processing of the N-terminal end, if present. Artifacts generated by the in-solution BFD protocol were also characterized. BFD can be easily implemented; it has been applied to the characterization of the active pharmaceutical ingredient of two RBD-based vaccines, and we foresee that it can be also helpful to the characterization of mutated RBDs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据