4.7 Article

Isomer-selective analysis of inositol phosphates with differential isotope labelling by phosphate methylation using liquid chromatography with tandem mass spectrometry

期刊

ANALYTICA CHIMICA ACTA
卷 1191, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.aca.2021.339286

关键词

Inositol phosphate; Metal oxide-based af finity chromatography; Solid -phase extraction; Derivatization; Isotope labeling; Targeted metabolomics

资金

  1. China Scholarship Council [201807060010]
  2. German Research Foundation (DFG, Deutsche Forschungsgemeinschaft) [374031971-TRR 240]

向作者/读者索取更多资源

In this study, an improved method for detecting inositol phosphates was established using a labeling methylation strategy. This method was successfully applied to biological samples, providing efficient separation and quantification of inositol phosphate metabolites.
Inositol phosphates belong to a family of structurally diverse signaling molecules playing crucial role in Ca2+ release from intracellular storage vesicles. There are many possibilities of phosphorylation, including their degree and position. Inositol (1,4,5) trisphosphate has been well recognized as the most important second messenger among this family. It remains a challenge to analyse the entire inositol phosphate metabolite family due to its structural complexity, high polarity, and high phosphate density. In this study, we have established an improved UHPLC-ESI-MS/MS method based on a differential isotope labelling methylation strategy. An SPE extraction kit composed of TiO2 and PTFE filter was employed for sample preparation which provided good extraction performance. Samples were methylated (light label) to neutralize the phosphate groups and give better performance in liquid chromatography. Regioisomers and inositol phosphates differing in their number of phosphate residues were successfully separated after optimization on a core-shell cholesterylether-bonded RP-type column (Cosmocore 2.6Cholester) using methanol as organic modifier. Triple quadrupole MS detection was based on selected reaction monitoring (SRM) acquisition with characteristic fragments. Stable isotope labeling methylation was performed to generate internal standards (heavy label). Limits of quantification from 0.32 to 0.89 pmol on column was achieved. This method was validated to be suitable for inositol phosphate profiling in biological samples. After application in cultured HeLa cells, NIST SRM1950 plasma, and human platelets,

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据