4.6 Article

In situ SERS monitoring of intracellular H2O2 in single living cells based on label-free bifunctional Fe3O4@Ag nanoparticles

期刊

ANALYST
卷 147, 期 9, 页码 1815-1823

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2an00035k

关键词

-

资金

  1. National Natural Science Foundation of P. R. China [21705015, 21874015, 21675020]
  2. Fundamental Research Funds for the Central Universities [N2005020]
  3. Open Project of State Key Laboratory of Supramolecular Structure and Materials [sklssm2021024]

向作者/读者索取更多资源

Visualization of signaling molecules in single living cells is crucial for understanding cellular metabolism and physiology. This study proposed a label-free nanosensor strategy based on surface-enhanced Raman scattering (SERS) spectroscopy for in situ imaging of intracellular H2O2 in single living cancer cells.
Visualization of signaling molecules in single living cells is crucial for understanding cellular metabolism and physiology, which can provide valuable insights into early diagnoses and treatments of diseases. Highly sensitive in situ monitoring of intracellular analytes released from single living cells by virtue of label-free nanosensors is urgently needed, which can avoid interferences from molecular labeling. Here, we proposed an ultrasensitive strategy for in situ imaging of intracellular H2O2 in single living cancer cells by surface-enhanced Raman scattering (SERS) spectroscopy with the utilization of label-free Fe3O4@Ag core-satellite nanoparticles (NPs). The Fe3O4@Ag NPs can efficiently and selectively catalyze the oxidation of the peroxidase substrate 3,3 ',5,5 '-tetramethylbenzidine (TMB) in the presence of H2O2. Additionally, they exhibit excellent SERS activity that allows for in situ monitoring of intracellular H2O2 in living cells through establishing the correlation between the H2O2 level and the SERS intensity of the catalytic oxidation product of TMB. The H2O2 concentration is revealed through the SERS intensity of oxidized TMB with a good linear response in a wide range from 1 fM to 1 mM. Moreover, the intracellular H2O2 level in live cancer cells and imaging of the distribution of H2O2 inside single cells can be achieved by using such a label-free nanosensor based strategy. Our work demonstrates that the label-free Fe3O4@Ag NP-based SERS imaging and quantification strategy is a promising and powerful approach to assess intracellular H2O2 in living cells and allows us to monitor single-cell signaling molecules with nanoscale resolution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据