4.7 Review

Evolutionary Medicine Perspectives: Helicobacter pylori, Lactose Intolerance, and 3 Hypotheses for Functional and Inflammatory Gastrointestinal and Hepatobiliary Disorders

期刊

AMERICAN JOURNAL OF GASTROENTEROLOGY
卷 117, 期 5, 页码 721-728

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.14309/ajg.0000000000001681

关键词

-

向作者/读者索取更多资源

Evolutionary medicine integrates various scientific disciplines to provide explanations for the causes of many diseases, improving physicians' understanding of disease processes, care, and research.
Many clinicians have suboptimal knowledge of evolutionary medicine. This discipline integrates social and basic sciences, epidemiology, and clinical medicine, providing explanations, especially ultimate causes, for many conditions. Principles include genetic variation from population bottleneck and founder effects, evolutionary trade-offs, and coevolution. For example, host-microbe coevolution contributes to the inflammatory and carcinogenic variability of Helicobacter pylori. Antibiotic-resistant strains are evolving, but future therapy could target promutagenic proteins. Ancient humans practicing dairying achieved survival and reproduction advantages of postweaning lactase persistence and passed this trait to modern descendants, delegitimizing lactose intolerance as disease in people with lactase nonpersistence. Three evolutionary hypotheses are each relevant to multiple diseases: (i) the polyvagal hypothesis posits that prehistoric adaptation of autonomic nervous system reactions to stress is beneficial acutely but, when continued chronically, predisposes individuals to painful functional gastrointestinal disorders, in whom it may be a biomarker; (ii) the thrifty gene hypothesis proposes genetic adaptation to feast-famine cycles among Pleistocene migrants to America, which is mismatched with Indigenous Americans' current diet and physical activity, predisposing them to obesity, nonalcoholic fatty liver disease, and gallstones and their complications; and (iii) the hygiene hypothesis proposes alteration of the gut microbiome, with which humans have coevolved, in allergic and autoimmune disease pathogenesis; for example, association of microbiome-altering proton pump inhibitor use with pediatric eosinophilic esophagitis, early-life gastrointestinal infection with celiac disease, and infant antibiotic use and an economically advanced environment with inflammatory bowel disease. Evolutionary perspectives broaden physicians' understanding of disease processes, improve care, and stimulate research.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据