4.6 Article

Bed structure and its impact on liquid distribution in a trickle bed reactor

期刊

AICHE JOURNAL
卷 69, 期 1, 页码 -

出版社

WILEY
DOI: 10.1002/aic.17649

关键词

catalyst loading; dynamic liquid holdup; liquid maldistribution; packing structure; trickle beds; two-phase pressure drop

向作者/读者索取更多资源

Trickle bed reactors, widely used in the process and refining industry, are being challenged to provide solutions for deep processing of feedstocks. This study quantifies the impact of packed bed structure on reactor hydrodynamics and discusses the effects of different packing techniques and liquid distribution on overall performance metrics.
Trickle bed reactors, which has been a workhorse for the process and refining industry for many decades, are progressively being challenged to provide solutions to deep processing of feedstocks. It is known that the structure of the packed bed which is formed with a certain arrangement of catalyst particles in the three-dimensional space within the reactor modulates in an unknown fashion the flow of fluids in the trickle bed, and in turn affects the conversion and selectivity in the trickle bed. Under deep processing conditions, the impact of the bed structure in modulating the overall reactor performance in a trickle bed is not as yet established. The question begets three sequential studies: estimating and quantifying the bed structure, measuring the liquid distribution, and estimating transport parameters (that are dependent on the bed structure and liquid distribution) so that the overall performance metrics as a reactor may be quantified. This contribution relates to the second of these questions, the first being already addressed to some extent by our earlier work. The current investigation aims at quantifying the effect of structure of the packed bed on hydrodynamics of the reactor. The impact of various packing techniques is discussed along with the development of correlations for two-phase pressure drop and dynamic liquid holdup. Liquid distribution is studied in depth for various operating parameters such as gas and liquid superficial velocities and column aspect ratio for uniform and non-uniform packing methods. The packing devices consist of various inserts attached to a hopper which can generate packing structures having void fraction in the range of 37.2%-46.4%. The maldistribution factor and flow maps for various aspect ratio of column suggest that maldistribution rises along with the increased channeling effect along the height of the column. Uniformly packed bed were measurably less prone to maldistribution along the length than the non-uniformly packed beds.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据