4.7 Article

Effects of injection on flame flashback in supersonic crossflow

期刊

AEROSPACE SCIENCE AND TECHNOLOGY
卷 120, 期 -, 页码 -

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.ast.2021.107226

关键词

Supersonic combustion; Flame flashback; FPV combustion model; Separated boundary layer; Thermally choked flow

资金

  1. National Natural Science Foundation of China [12002381, 11925207]
  2. Scientific Research Plan of National University of Defense Technology [ZK19-02]
  3. Postgraduate Scientific Research Innovation Project of Hunan Province [CX20200084]

向作者/读者索取更多资源

An approach combining numerical, experimental, and theoretical analyses was used to study the effects of injection parameters on the flame flashback phenomenon. The simulations showed good agreement with experimental observations. Higher fuel equivalence ratios, sharper injection degrees, longer premixing distances, and multiple injectors promoted fuel-flow interactions, enhancing mixing efficiency and fuel penetration. Changes in thermally choked flow and temperature fluctuation thresholds were found to be important factors influencing flame flashback.
An approach that combines numerical, experimental, and theoretical analyses has been implemented to investigate the effects of the injection parameters on the flame flashback phenomenon of supersonic crossflow with a cavity flame holder. In the simulations, a hybrid large eddy simulation (LES)/flamelet progress variable (FPV) combustion model was implemented. The simulations showed a good level of agreement with experimental observations and measurements in terms of the instantaneous and time-averaged results. Higher global fuel equivalence ratios, sharper injection degrees, longer premixing distances, and the presence of multiple injectors promoted the interactions between fuel and incoming flow, resulting in increases in the mixing efficiency and fuel penetration height. Thus, the intense combustion in cavity and downstream enhanced the downstream backpressure and boundary layer separation. The low-speed zone in the interior of the boundary layer is also conducive to combustion enhancement and creates positive feedback. The gradually separated boundary layer forms a thermally choked flow, prompting the flame front to accelerate forward until it reaches the fuel injection position. The theoretical analyses demonstrated that the above factors can effectively influence the balance of heat release and dissipation for the system, reducing the temperature fluctuation thresholds. Thus, the system easily became unstable under the same temperature fluctuation range conditions, once certain temperature fluctuation thresholds in sensitive areas were exceeded. Finally, exhibiting an intense combustion in separation boundary layer and violent flame flashback phenomenon. (C) 2021 Elsevier Masson SAS. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据