4.7 Review

2D/2D Heterojunction systems for the removal of organic pollutants: A review

期刊

出版社

ELSEVIER
DOI: 10.1016/j.cis.2021.102540

关键词

Photocatalysis; Intimate contact interface; Types; Synthesis; Degradation

资金

  1. Key R&D project of Hunan province [2018SK2048]
  2. National Natural Science Foundation of China [51541801, 51521006]

向作者/读者索取更多资源

2D/2D heterojunctions are considered as highly promising photocatalysts due to their strong coupling interface that enhances the photocatalytic performance by facilitating the separation and migration of photoexcited electron-hole pairs. Therefore, the design of 2D/2D heterojunctions can serve as a potential model for expanding the application of photocatalysis in the removal of organic pollutants.
Photocatalysis is considered to be an effective way to remove organic pollutants, but the key to photocatalysis is finding a high-efficiency and stable photocatalyst. 2D materials-based heterojunction has aroused widespread concerns in photocatalysis because of its merits in more active sites, adjustable band gaps and shorter charge transfer distance. Among various 2D heterojunction systems, 2D/2D heterojunction with a face-to-face contact interface is regarded as a highly promising photocatalyst. Due to the strong coupling interface in 2D/2D heterojunction, the separation and migration of photoexcited electron-hole pairs are facilitated, which enhances the photocatalytic performance. Thus, the design of 2D/2D heterojunction can become a potential model for expanding the application of photocatalysis in the removal of organic pollutants. Herein, in this review, we first summarize the fundamental principles, classification, and strategies for elevating photocatalytic performance. Then, the synthesis and application of the 2D/2D heterojunction system for the removal of organic pollutants are discussed. Finally, the challenges and perspectives in 2D/2D heterojunction photocatalysts and their application for removing organic pollutants are presented.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据