4.7 Article

The application of machine learning models based on particles characteristics during coal slime flotation

期刊

ADVANCED POWDER TECHNOLOGY
卷 33, 期 1, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apt.2021.11.015

关键词

Flotation; Machine learning; Particle behavior; Random forest (RF); Particle characteristics

向作者/读者索取更多资源

In this study, machine learning models were used to simulate the migration behavior of minerals during coal slime flotation. The random forest model showed the highest accuracy and avoided the need for retraining. Particle size and composition were found to play a significant role in coal slime flotation.
In this study, four different machine learning (ML) models were used to simulate the migration behavior of minerals during coal slime flotation based on particle characteristics (shape, size, compositions, and types): random forest (RF), logistic regression (LR), AdaBoosting (Ada), and k-nearest neighbors (KNN). For ML model development, 70% of the total data was used for the training phase, and 30% was used for the testing phase. F-score and area under the curve (AUC) were used as the most vital indicators for evaluating the different ML models. Compared to the other ML models, the RF model had the best accuracy for simulating particle migration behavior during flotation. Furthermore, the RF model avoided the drawback of having to be retrained when the feed conditions changed. The results revealed that par-ticle size and particle composition play the most significant role in coal slime flotation. (c) 2021 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据