4.8 Article

Monolithic All-Perovskite Tandem Solar Cells with Minimized Optical and Energetic Losses

期刊

ADVANCED MATERIALS
卷 34, 期 11, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202110053

关键词

metal-halide perovskites; optical modeling; passivation; tandem solar cells

资金

  1. Netherlands Organization for Scientific Research (NWO) [680.91.011]
  2. NWO Spinoza grant
  3. Ministry of Education, Culture, and Science [024.001.035]

向作者/读者索取更多资源

An integrated all-perovskite tandem solar cell is developed using surface passivation strategies to reduce non-radiative recombination, yielding a high open-circuit voltage. By using optically benign transparent electrode and charge-transport layers, absorption in the narrow-bandgap sub-cell is improved, leading to an improvement in current-matching between sub-cells.
Perovskite-based multijunction solar cells are a potentially cost-effective technology that can help surpass the efficiency limits of single-junction devices. However, both mixed-halide wide-bandgap perovskites and lead-tin narrow-bandgap perovskites suffer from non-radiative recombination due to the formation of bulk traps and interfacial recombination centers which limit the open-circuit voltage of sub-cells and consequently of the integrated tandem. Additionally, the complex optical stack in a multijunction solar cell can lead to losses stemming from parasitic absorption and reflection of incident light which aggravates the current mismatch between sub-cells, thereby limiting the short-circuit current density of the tandem. Here, an integrated all-perovskite tandem solar cell is presented that uses surface passivation strategies to reduce non-radiative recombination at the perovskite-fullerene interfaces, yielding a high open-circuit voltage. By using optically benign transparent electrode and charge-transport layers, absorption in the narrow-bandgap sub-cell is improved, leading to an improvement in current-matching between sub-cells. Collectively, these strategies allow the development of a monolithic tandem solar cell exhibiting a power-conversion efficiency of over 23%.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据