4.8 Review

Harnessing the Quantum Behavior of Spins on Surfaces

期刊

ADVANCED MATERIALS
卷 35, 期 27, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202107534

关键词

quantum manipulation; quantum nanoscience; quantum sensing; quantum simulation; scanning tunneling microscopy; spins on surfaces

向作者/读者索取更多资源

This article introduces the control and measurement of individual quantum systems in the field of quantum information science. The combination of scanning tunneling microscopy and electron spin resonance allows for coherent control and readout of individual spins on surfaces. The article also discusses three domains of applications for surface spins, namely quantum sensing, quantum control, and quantum simulation, and provides physical principles and examples.
The desire to control and measure individual quantum systems such as atoms and ions in a vacuum has led to significant scientific and engineering developments in the past decades that form the basis of today's quantum information science. Single atoms and molecules on surfaces, on the other hand, are heavily investigated by physicists, chemists, and material scientists in search of novel electronic and magnetic functionalities. These two paths crossed in 2015 when it was first clearly demonstrated that individual spins on a surface can be coherently controlled and read out in an all-electrical fashion. The enabling technique is a combination of scanning tunneling microscopy (STM) and electron spin resonance, which offers unprecedented coherent controllability at the Angstrom length scale. This review aims to illustrate the essential ingredients that allow the quantum operations of single spins on surfaces. Three domains of applications of surface spins, namely quantum sensing, quantum control, and quantum simulation, are discussed with physical principles explained and examples presented. Enabled by the atomically-precise fabrication capability of STM, single spins on surfaces might one day lead to the realization of quantum nanodevices and artificial quantum materials at the atomic scale.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据