4.8 Article

Simultaneously Blocking Chemical Crosstalk and Internal Short Circuit via Gel-Stretching Derived Nanoporous Non-Shrinkage Separator for Safe Lithium-Ion Batteries

期刊

ADVANCED MATERIALS
卷 34, 期 2, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202106335

关键词

chemical crosstalk; lithium-ion batteries; separators; thermal runaway

资金

  1. Ministry of Science and Technology of China [2019YFE0100200, 2019YFA0705703, 2018YFB0104400]
  2. National Natural Science Foundation of China [U1564205, 51706117]
  3. Tsinghua University Initiative Scientific Research Program [2019Z02UTY06]
  4. US Department of Energy (DOE) Vehicle Technologies Office
  5. U.S. DOE [DE-AC02-06CH11357]

向作者/读者索取更多资源

A nanoporous non-shrinkage separator (GS-PI) was fabricated to address the thermal runaway issue in high-energy-density lithium-ion batteries, preventing internal short circuits and inhibiting chemical crosstalk and associated exothermic reactions.
The separator, an ionic permeable and electronic insulating membrane between cathode and anode, plays a crucial role in the electrochemical and safety performance of batteries. However, commercial polyolefin separators not only suffer from inevitable thermal shrinkage at elevated temperature, but also fail to inhibit the hidden chemical crosstalk of reactive gases such as O-2, leading to often reported thermal runaway (TR) and hence preventing large-scale implementation of high-energy-density lithium-ion batteries. Herein, a nanoporous non-shrinkage separator (GS-PI) is fabricated via a novel gel-stretching orientation approach to eliminate TR. In situ synchrotron small angle X-ray scattering during heating clearly shows that the as-prepared thin GS-PI separator exhibits superior mechanical tolerance at high temperature, thus effectively preventing internal short circuit. Meanwhile, the unique nanoporous structure design further blocks chemical crosstalk and the associated exothermic reactions. Accelerating rate calorimetry tests reveal that the practical 1 Ah LiNi0.6Co0.2Mn0.2O2 (NCM622)/graphite pouch cell using GS-PI nanoporous separator show a maximum temperature rise (dT/dt(max)) of only 3.7 degrees C s(-1) compared to 131.6 degrees C s(-1) in the case of Al2O3@PE macroporous separator. Moreover, despite the reduced pore size, the GS-PI separator demonstrates better cycling stability than conventional Al2O3@PE separator at high temperature without sacrificing specific capacity and rate capability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据