4.8 Article

Defect-Free Metal Deposition on 2D Materials via Inkjet Printing Technology

期刊

ADVANCED MATERIALS
卷 34, 期 48, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202104138

关键词

2D materials; atomic defects; hexagonal boron nitride; inkjet printing; metal deposition

资金

  1. King Abdullah University of Science and Technology (KAUST), the Ministry of Science and Technology of China [2018YFE0100800, 2019YFE0124200]
  2. National Natural Science Foundation of China [61874075]
  3. Suzhou Science and Technology Bureau, the Ministry of Finance of China [SX21400213]
  4. 111 Project from the State Administration of Foreign Experts Affairs of China
  5. Collaborative Innovation Centre of Suzhou Nano Science Technology
  6. Jiangsu Key Laboratory for Carbon-Based Functional Materials Devices
  7. Priority Academic Program Development of Jiangsu Higher Education Institutions

向作者/读者索取更多资源

2D materials have attractive properties for electronic device fabrication, but integrating them into commercial devices and circuits is challenging. Recent studies show that inkjet printing technology for metal deposition can prevent damage to the atomic structure of ultrathin 2D materials and maintain a sharp interface, which is crucial for the design and optimization of electronic devices and circuits.
2D materials have many outstanding properties that make them attractive for the fabrication of electronic devices, such as high conductivity, flexibility, and transparency. However, integrating 2D materials in commercial devices and circuits is challenging because their structure and properties can be damaged during the fabrication process. Recent studies have demonstrated that standard metal deposition techniques (like electron beam evaporation and sputtering) significantly damage the atomic structure of 2D materials. Here it is shown that the deposition of metal via inkjet printing technology does not produce any observable damage in the atomic structure of ultrathin 2D materials, and it can keep a sharp interface. These conclusions are supported by abundant data obtained via atomistic simulations, transmission electron microscopy, nanochemical metrology, and device characterization in a probe station. The results are important for the understanding of inkjet printing technology applied to 2D materials, and they could contribute to the better design and optimization of electronic devices and circuits.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据