4.8 Article

Influence of Molecular Weight on the Organic Electrochemical Transistor Performance of Ladder-Type Conjugated Polymers

期刊

ADVANCED MATERIALS
卷 34, 期 4, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202106235

关键词

complementary circuits; inverters; molecular weight; n-type polymers; organic electrochemical transistors; organic mixed ionic-electronic conductors

资金

  1. Knut and Alice Wallenberg foundation
  2. Swedish Research Council [2016-03979, 2020-03243]
  3. AForsk [18-313, 19-310]
  4. Olle Engkvists Stiftelse [204-0256]
  5. VINNOVA [2020-05223]
  6. European Commission through the Marie Sklodowska-Curie project HORATES [GA-955837]
  7. FET-OPEN project MITICS [GA-964677]
  8. Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University [SFO-Mat-LiU 2009-00971]
  9. National Research Foundation of Korea [NRF-2019R1A2C2085290, 2019R1A6A1A11044070]
  10. National Science Foundation [DMR-2003518]

向作者/读者索取更多资源

Fine-tuning the molecular weight of rigid, ladder-type polymers can significantly enhance the performance of n-type OECTs, achieving record-high geometry-normalized transconductance, electron mobility, and volumetric capacitance. This improvement is attributed to more efficient intermolecular charge transport in high-molecular-weight polymers. Additionally, complementary inverters based on OECTs have demonstrated remarkable voltage gains and ultralow power consumption, making them among the best sub-1 V inverters reported to date.
Organic electrochemical transistors (OECTs) hold promise for developing a variety of high-performance (bio-)electronic devices/circuits. While OECTs based on p-type semiconductors have achieved tremendous progress in recent years, n-type OECTs still suffer from low performance, hampering the development of power-efficient electronics. Here, it is demonstrated that fine-tuning the molecular weight of the rigid, ladder-type n-type polymer poly(benzimidazobenzophenanthroline) (BBL) by only one order of magnitude (from 4.9 to 51 kDa) enables the development of n-type OECTs with record-high geometry-normalized transconductance (g(m,norm) approximate to 11 S cm(-1)) and electron mobility x volumetric capacitance (mu C* approximate to 26 F cm(-1) V-1 s(-1)), fast temporal response (0.38 ms), and low threshold voltage (0.15 V). This enhancement in OECT performance is ascribed to a more efficient intermolecular charge transport in high-molecular-weight BBL than in the low-molecular-weight counterpart. OECT-based complementary inverters are also demonstrated with record-high voltage gains of up to 100 V V-1 and ultralow power consumption down to 0.32 nW, depending on the supply voltage. These devices are among the best sub-1 V complementary inverters reported to date. These findings demonstrate the importance of molecular weight in optimizing the OECT performance of rigid organic mixed ionic-electronic conductors and open for a new generation of power-efficient organic (bio-)electronic devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据