4.8 Article

Biohybrid Variable-Stiffness Soft Actuators that Self-Create Bone

期刊

ADVANCED MATERIALS
卷 34, 期 8, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202107345

关键词

actuators; biohybrids; mineralization; variable stiffness

资金

  1. Japanese Society of the Promotion of Science (JSPS) Bridge Fellowship program [BR170502]
  2. KAKENHI [JP20H04534]
  3. Swedish Research Council [VR2014-3079]
  4. Promobilia [F17603]
  5. China Scholarship Council [201808330454]
  6. JSPS [JPJSBP 120 209 923]
  7. STINT, The Swedish Foundation for International Cooperation in Research and Higher Education [MG2019-8171]

向作者/读者索取更多资源

Inspired by initial bone development, bioinduced variable-stiffness actuators are fabricated, optimized, and characterized in this study. These actuators can morph in shape and change from soft to rigid, with the ability to promote mineralization for bone tissue integration.
Inspired by the dynamic process of initial bone development, in which a soft tissue turns into a solid load-bearing structure, the fabrication, optimization, and characterization of bioinduced variable-stiffness actuators that can morph in various shapes and change their properties from soft to rigid are hereby presented. Bilayer devices are prepared by combining the electromechanically active properties of polypyrrole with the compliant behavior of alginate gels that are uniquely functionalized with cell-derived plasma membrane nanofragments (PMNFs), previously shown to mineralize within 2 days, which promotes the mineralization in the gel layer to achieve the soft to stiff change by growing their own bone. The mineralized actuator shows an evident frozen state compared to the movement before mineralization. Next, patterned devices show programmed directional and fixated morphing. These variable-stiffness devices can wrap around and, after the PMNF-induced mineralization in and on the gel layer, adhere and integrate onto bone tissue. The developed biohybrid variable-stiffness actuators can be used in soft (micro-)robotics and as potential tools for bone repair or bone tissue engineering.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据