4.8 Review

Advanced Flame-Retardant Methods for Polymeric Materials

期刊

ADVANCED MATERIALS
卷 34, 期 46, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202107905

关键词

bulk additives; bulk-copolymerization; flame-retardant methods; polymeric materials; surface treatment

资金

  1. National Natural Science Foundation of China [51991351, 51991350]

向作者/读者索取更多资源

Most organic polymeric materials are highly flammable, causing significant damages to human life and property through the large amounts of smoke, toxic gases, heat, and melt drips produced during burning. Conventional flame-retardant methods are facing difficulties in meeting the increasing flame-retardant requirements. Advanced flame-retardant methods, such as all-in-one intumescence and nanotechnology, have been developed to provide potential solutions to these challenges.
Most organic polymeric materials have high flammability, for which the large amounts of smoke, toxic gases, heat, and melt drips produced during their burning cause immeasurable damages to human life and property every year. Despite some desirable results having been achieved by conventional flame-retardant methods, their application is encountering more and more difficulties with the ever-increasing high flame-retardant requirements such as high flame-retardant efficiency, great persistence, low release of heat, smoke, and toxic gases, and more importantly not deteriorating or even enhancing the overall properties of polymers. Under such condition, some advanced flame-retardant methods have been developed in the past years based on all-in-one intumescence, nanotechnology, in situ reinforcement, intrinsic char formation, plasma treatment, biomimetic coatings, etc., which have provided potential solutions to the dilemma of conventional flame-retardant methods. This review briefly outlines the development, application, and problems of conventional flame-retardant methods, including bulk-additive, bulk-copolymerization, and surface treatment, and focuses on the raise, development, and potential application of advanced flame-retardant methods. The future development of flame-retardant methods is further discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据