4.8 Article

Redox-Active Metaphosphate-Like Terminals Enable High-Capacity MXene Anodes for Ultrafast Na-Ion Storage

期刊

ADVANCED MATERIALS
卷 34, 期 15, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202108682

关键词

MXenes; redox-active terminals; sodium-ion storage; hybrid-ion capacitors

资金

  1. European Union's Horizon 2020 research and innovation programme [GrapheneCore3 881603]
  2. Sachsisches Staatsministerium fur Wissenschaft und Kunst [HYSUCAP 100478697]
  3. German Research Foundation (DFG) within the Cluster of Excellence [CRC 1415, 417590517]
  4. National Natural Science Foundation of China [52072241, 51772187]
  5. Czech Science Foundation (GACR) [19-26910X]
  6. China Scholarship Council
  7. M-ERA.NET
  8. Projekt DEAL

向作者/读者索取更多资源

This study reports on the construction of redox-active phosphorus-oxygen terminals as an attractive strategy to significantly enhance the specific capacities of Nb4C3 MXenes for ultrafast Na+ storage. The molecular-level design of MXene terminals provides opportunities for developing high-capacity and fast-charging electrodes, alleviating the energy-power tradeoff typical for energy-storage devices.
2D transition metal carbides and/or nitrides, so-called MXenes, are noted as ideal fast-charging cation-intercalation electrode materials, which nevertheless suffer from limited specific capacities. Herein, it is reported that constructing redox-active phosphorus-oxygen terminals can be an attractive strategy for Nb4C3 MXenes to remarkably boost their specific capacities for ultrafast Na+ storage. As revealed, redox-active terminals with a stoichiometric formula of PO2- display a metaphosphate-like configuration with each P atom sustaining three P-O bonds and one P(sic)O dangling bond. Compared with conventional O-terminals, metaphosphate-like terminals empower Nb4C3 (denoted PO2-Nb4C3) with considerably enriched carrier density (fourfold), improved conductivity (12.3-fold at 300 K), additional redox-active sites, boosted Nb redox depth, nondeclined Na+-diffusion capability, and buffered internal stress during Na+ intercalation/de-intercalation. Consequently, compared with O-terminated Nb4C3, PO2-Nb4C3 exhibits a doubled Na+-storage capacity (221.0 mAh g(-1)), well-retained fast-charging capability (4.9 min at 80% capacity retention), significantly promoted cycle life (nondegraded capacity over 2000 cycles), and justified feasibility for assembling energy-power-balanced Na-ion capacitors. This study unveils that the molecular-level design of MXene terminals provides opportunities for developing simultaneously high-capacity and fast-charging electrodes, alleviating the energy-power tradeoff typical for energy-storage devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据