4.8 Article

An Air-Stable High-Nickel Cathode with Reinforced Electrochemical Performance Enabled by Convertible Amorphous Li2CO3 Modification

期刊

ADVANCED MATERIALS
卷 34, 期 12, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202108947

关键词

air stability; amorphous Li; 2CO; (3); cathode electrolyte interphase; high-nickel cathodes; lithium-ion batteries

资金

  1. Basic Science Center Project of National Natural Science Foundation [51788104]
  2. National Natural Science Foundation of China [51902314, 22179133]
  3. Transformational Technologies for Clean Energy and Demonstration, Strategic Priority Research Program of the Chinese Academy of Sciences [XDA21070300]
  4. Youth Innovation Promotion Association CAS [2019033]

向作者/读者索取更多资源

A stable high-nickel cathode is designed by inducing a dense amorphous Li2CO3 coating layer on the particle surface. This coating layer serves as a physical protection layer and can be transformed into a robust cathode electrolyte interphase (CEI), improving the cathode's interfacial stability and electrochemical performance.
High-nickel (Ni >= 90%) cathodes with high specific capacity hold great potential for next-generation lithium-ion batteries (LIBs). However, their practical application is restricted by the high interfacial reactivity under continuous air erosion and electrolyte assault. Herein, a stable high-nickel cathode is rationally designed via in situ induction of a dense amorphous Li2CO3 on the particle surface by a preemptive atmosphere control. Among the residual lithium compounds, Li2CO3 is the most thermodynamically stable one, so a dense Li2CO3 coating layer can serve as a physical protection layer to isolate the cathode from contact with moist air. Furthermore, amorphous Li2CO3 can be transformed into a robust F-rich cathode electrolyte interphase (CEI) during cycling, which reinforces the cathode's interfacial stability and improves the electrochemical performance. The assembled coin cell with this modified cathode delivers a high discharge capacity of 232.4 mAh g(-1) with a superior initial Coulombic efficiency (CE) of 95.1%, and considerable capacity retention of 90.4% after 100 cycles. Furthermore, no slurry gelation occurs during the large-scale electrode fabrication process. This work opens a valuable perspective on the evolution of amorphous Li2CO3 in LIBs and provides guidance on protecting unstable high-capacity cathodes for energy-storage devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据