4.8 Review

Quantum Sensing of Thermoelectric Power in Low-Dimensional Materials

期刊

ADVANCED MATERIALS
卷 35, 期 27, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202106871

关键词

low dimensional materials; quantum sensing; scanning probe microscopy; scanning thermoelectric microscopy; thermoelectric power

向作者/读者索取更多资源

This paper introduces critical advances in the field of quantum sensing of thermopower, ranging from atomic to several-hundred-nanometer scales, and discusses the roles of low-dimensionality, defects, spins, and relativistic effects in optimized power generation. Investigating the microscopic nature of thermopower in quantum materials can provide insights for the design of advanced materials for future thermoelectric applications, while quantum sensing techniques for thermopower can pave the way for practical and novel energy devices towards a sustainable society.
Thermoelectric power, has been extensively studied in low-dimensional materials where quantum confinement and spin textures can largely modulate thermopower generation. In addition to classical and macroscopic values, thermopower also varies locally over a wide range of length scales, and is fundamentally linked to electron wave functions and phonon propagation. Various experimental methods for the quantum sensing of localized thermopower have been suggested, particularly based on scanning probe microscopy. Here, critical advances in the quantum sensing of thermopower are introduced, from the atomic to the several-hundred-nanometer scales, including the unique role of low-dimensionality, defects, spins, and relativistic effects for optimized power generation. Investigating the microscopic nature of thermopower in quantum materials can provide insights useful for the design of advanced materials for future thermoelectric applications. Quantum sensing techniques for thermopower can pave the way to practical and novel energy devices for a sustainable society.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据