4.8 Article

Designing and Demystifying the Lithium Metal Interface toward Highly Reversible Batteries

相关参考文献

注意:仅列出部分参考文献,下载原文获取全部文献信息。
Review Chemistry, Physical

Anode-Free Full Cells: A Pathway to High-Energy Density Lithium-Metal Batteries

Sanjay Nanda et al.

Summary: The anode-free full cell configuration is ideal for high energy density and lithium storage, but poor efficiencies of lithium plating and stripping lead to short cycle life. Recent studies have shown that advanced electrolytes and other methods can stabilize lithium deposition and improve cycle life.

ADVANCED ENERGY MATERIALS (2021)

Article Chemistry, Multidisciplinary

Identifying the Critical Anion-Cation Coordination to Regulate the Electric Double Layer for an Efficient Lithium-Metal Anode Interface

Rui Xu et al.

Summary: The electric double layer (EDL) chemistry at the electrode/electrolyte interface is found to predominantly control the competitive reduction reactions during SEI construction on Li metal anode. Introducing multi-valent cation additives has been validated as a promising strategy to enhance the performance of SEI, shedding new light on the targeted regulation of reactive alkali metal interfaces.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Physical

Diluted High Concentration Electrolyte with Dual Effects for Practical Lithium-Sulfur Batteries

Zhipeng Jiang et al.

Summary: A modified diluted high concentration electrolyte (MDHCE) was designed for practical Li-S batteries to achieve high energy density and stable cycling. The MDHCE enables high stability and fast Li-ion transport at the hybrid interface, improving the reversibility of Li anode and kinetics of S cathode. The practicality of MDHCE was further demonstrated in a 0.4 Ah Li-S pouch cell with no obvious capacity fading and steady Coulombic efficiency of 99.6%.

ENERGY STORAGE MATERIALS (2021)

Article Chemistry, Multidisciplinary

Non-Solvating and Low-Dielectricity Cosolvent for Anion-Derived Solid Electrolyte Interphases in Lithium Metal Batteries

Jun-Fan Ding et al.

Summary: The cosolvents play a critical role in the solvation structure of Li+ and the formation of SEI on working Li metal anodes, with NL cosolvents enhancing the interaction between anion and Li+ to induce an anion-derived inorganic-rich SEI. A solvent with proper relative binding energy toward Li+ and dielectric constant is suitable as NL cosolvent.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Electrochemistry

Optimizing Cycling Conditions for Anode-Free Lithium Metal Cells

A. J. Louli et al.

Summary: This study focuses on the performance of anode-free lithium metal cells under different cycling conditions, and finds that cycling with an asymmetric slower charge protocol is optimal. The research also examines the effect of depth of discharge and demonstrates the benefit of forming a lithium reservoir in situ. Additionally, a specialized intermittent high depth of discharge cycling protocol is developed for anode-free lithium metal cells.

JOURNAL OF THE ELECTROCHEMICAL SOCIETY (2021)

Article Energy & Fuels

Corrosion of lithium metal anodes during calendar ageing and its microscopic origins

David T. Boyle et al.

Summary: Rechargeable lithium metal batteries must have a long cycle life and calendar life. The loss of capacity during calendar ageing is caused by chemical corrosion of Li and the continuous growth of the solid electrolyte interphase. Functional electrolytes must minimize the rate of solid electrolyte interphase growth and the surface area of electrodeposited Li metal to ensure long battery life.

NATURE ENERGY (2021)

Article Materials Science, Multidisciplinary

New Insights on the Good Compatibility of Ether-Based Localized High-Concentration Electrolyte with Lithium Metal

Tao Li et al.

Summary: This study conducted a systematic comparison between two representative high-concentration electrolytes (LHCEs) based on DMC and DME in high-voltage Li metal batteries, revealing that DME-based LHCE exhibits better compatibility and stability with Li metal anodes than DMC-based LHCE. The findings provide fresh insights on the stable nature of ether-based LHCE with Li metal anodes for advanced electrolyte engineering.

ACS MATERIALS LETTERS (2021)

Article Chemistry, Physical

Morphological control of electrodeposited lithium metal via seeded growth: stepwise spherical to fibrous lithium growth

Se Hwan Park et al.

Summary: A mechanism for controlling morphology evolution in Li deposition was identified, with a seeded Li deposition strategy proposed to minimize surface area of Li deposits and improve cycle life. By changing the current from low to high, fibrous Li growth can be achieved, resulting in smaller surface areas and suppressed side reactions. This strategy showed remarkable improvement compared to single current deposition at the same average current density.

JOURNAL OF MATERIALS CHEMISTRY A (2021)

Review Electrochemistry

Review-Localized High-Concentration Electrolytes for Lithium Batteries

Xia Cao et al.

Summary: Conventional LiPF6/carbonate-based electrolytes have been widely used in graphite-based lithium ion batteries for their stability, but are less stable in Li metal and silicon anodes. Localized high-concentration electrolytes have unique advantages, forming stable SEI layers to improve stability.

JOURNAL OF THE ELECTROCHEMICAL SOCIETY (2021)

Review Chemistry, Multidisciplinary

Competitive Solid-Electrolyte Interphase Formation on Working Lithium Anodes

Rui Xu et al.

Summary: This article describes the critical rationale behind competitive SEI formation, analyzes the fundamentals of competitive SEI-forming reactions at the Li/electrolyte interface, and elucidates the kinetic competition between SEI growth and Li deposition. Furthermore, it comprehensively summarizes the intrinsic modulation of kinetic competition by factors such as electrolyte formulation, current density, and temperature.

TRENDS IN CHEMISTRY (2021)

Article Chemistry, Applied

Perspective on the critical role of interface for advanced batteries

Chong Yan et al.

JOURNAL OF ENERGY CHEMISTRY (2020)

Review Chemistry, Multidisciplinary

Toward Critical Electrode/Electrolyte Interfaces in Rechargeable Batteries

Chong Yan et al.

ADVANCED FUNCTIONAL MATERIALS (2020)

Review Chemistry, Physical

Thermodynamic Understanding of Li-Dendrite Formation

Xiangwen Gao et al.

Editorial Material Chemistry, Multidisciplinary

Lithium Batteries: 50 Years of Advances to Address the Next 20 Years of Climate Issues

M. Stanley Whittingham

NANO LETTERS (2020)

Article Engineering, Chemical

A review on the failure and regulation of solid electrolyte interphase in lithium batteries

Jun-Fan Ding et al.

Journal of Energy Chemistry (2020)

Review Chemistry, Multidisciplinary

Rational design of two-dimensional nanomaterials for lithium-sulfur batteries

Milan Jana et al.

ENERGY & ENVIRONMENTAL SCIENCE (2020)

Review Chemistry, Multidisciplinary

Regulating electrodeposition morphology of lithium: towards commercially relevant secondary Li metal batteries

Jingxu Zheng et al.

CHEMICAL SOCIETY REVIEWS (2020)

Article Multidisciplinary Sciences

Quantifying inactive lithium in lithium metal batteries

Chengcheng Fang et al.

NATURE (2019)

Article Chemistry, Physical

A Concentrated Ternary-Salts Electrolyte for High Reversible Li Metal Battery with Slight Excess Li

Feilong Qiu et al.

ADVANCED ENERGY MATERIALS (2019)

Review Chemistry, Physical

Research and development of advanced battery materials in China

Yaxiang Lu et al.

ENERGY STORAGE MATERIALS (2019)

Review Chemistry, Multidisciplinary

Recent advances in understanding dendrite growth on alkali metal anodes

He Liu et al.

ENERGYCHEM (2019)

Review Chemistry, Multidisciplinary

Key Issues Hindering a Practical Lithium-Metal Anode

Chengcheng Fang et al.

TRENDS IN CHEMISTRY (2019)

Article Chemistry, Physical

High-Efficiency Lithium-Metal Anode Enabled by Liquefied Gas Electrolytes

Yangyuchen Yang et al.

Article Chemistry, Physical

Accurate Determination of Coulombic Efficiency for Lithium Metal Anodes and Lithium Metal Batteries

Brian D. Adams et al.

ADVANCED ENERGY MATERIALS (2018)

Article Chemistry, Multidisciplinary

High-Voltage Lithium-Metal Batteries Enabled by Localized High-Concentration Electrolytes

Shuru Chen et al.

ADVANCED MATERIALS (2018)

Article Chemistry, Multidisciplinary

Nanoscale Nucleation and Growth of Electrodeposited Lithium Metal

Allen Pei et al.

NANO LETTERS (2017)

Review Nanoscience & Nanotechnology

Reviving the lithium metal anode for high-energy batteries

Dingchang Lin et al.

NATURE NANOTECHNOLOGY (2017)

Review Chemistry, Multidisciplinary

Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review

Xin-Bing Cheng et al.

CHEMICAL REVIEWS (2017)

Article Multidisciplinary Sciences

High rate and stable cycling of lithium metal anode

Jiangfeng Qian et al.

NATURE COMMUNICATIONS (2015)

Review Chemistry, Multidisciplinary

Electrolytes and Interphases in Li-Ion Batteries and Beyond

Kang Xu

CHEMICAL REVIEWS (2014)

Review Chemistry, Multidisciplinary

Lithium metal anodes for rechargeable batteries

Wu Xu et al.

ENERGY & ENVIRONMENTAL SCIENCE (2014)

Review Chemistry, Physical

Challenges for Rechargeable Li Batteries

John B. Goodenough et al.

CHEMISTRY OF MATERIALS (2010)