4.8 Article

Defect-Selectivity and Order-in-Disorder Engineering in Carbon for Durable and Fast Potassium Storage

期刊

ADVANCED MATERIALS
卷 34, 期 7, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202108621

关键词

carbon nanosheets; carbon vacancies; defect-rich materials; order in disorder; potassium-ion batteries

资金

  1. National Natural Science Foundation of China [21975283, 21871164]
  2. Taishan Scholar Project Foundation of Shandong Province [ts20190908]
  3. Natural Science Foundation of Shandong Province [ZR2021ZD05]
  4. China Postdoctoral Science Foundation [2020M681762]
  5. State Key Laboratory of Chemistry and Utilization of Carbon-based Energy Resource [KFKT2021007]
  6. CAS Key Laboratory of Carbon Materials [KLCMKFJJ2010]

向作者/读者索取更多资源

This study reports a self-template strategy for in situ defect-selectivity and order-in-disorder synergetic engineering in carbon, which simultaneously enhances the potassium storage capability, rate capability, and cyclic stability. By tuning defect sites and inducing surface atom rearrangement, the carbon material achieves high conductivity and abundant reversible carbon vacancies.
Defect-rich carbon materials possess high gravimetric potassium storage capability due to the abundance of active sites, but their cyclic stability is limited because of the low reversibility of undesirable defects and the deteriorative conductivity. Herein, in situ defect-selectivity and order-in-disorder synergetic engineering in carbon via a self-template strategy is reported to boost the K+-storage capacity, rate capability and cyclic stability simultaneously. The defect-sites are selectively tuned to realize abundant reversible carbon-vacancies with the sacrifice of poorly reversible heteroatom-defects through the persistent gas release during pyrolysis. Meanwhile, nanobubbles generated during the pyrolysis serve as self-templates to induce the surface atom rearrangement, thus in situ embedding nanographitic networks in the defective domains without serious phase separation, which greatly enhances the intrinsic conductivity. The synergetic structure ensures high concentration of reversible carbon-vacancies and fast charge-transfer kinetics simultaneously, leading to high reversible capacity (425 mAh g(-1) at 0.05 A g(-1)), high-rate (237.4 mAh g(-1) at 1 A g(-1)), and superior cyclic stability (90.4% capacity retention from cycle 10 to 400 at 0.1 A g(-1)). This work provides a rational and facile strategy to realize the tradeoff between defect-sites and intrinsic conductivity, and gives deep insights into the mechanism of reversible potassium storage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据