4.8 Review

Photocatalytic Z-Scheme Overall Water Splitting: Recent Advances in Theory and Experiments

期刊

ADVANCED MATERIALS
卷 33, 期 52, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202105195

关键词

computational modeling; hydrogen evolution reaction; photocatalysis; water splitting; Z-scheme

资金

  1. Higher Education Commission of Pakistan

向作者/读者索取更多资源

Photocatalytic water splitting is a crucial approach for green hydrogen production, utilizing Z-scheme mimicking natural photosynthesis to catalyze surface chemical reactions through effective coupling of semiconductors and redox mediators. Recent studies have made progress in understanding the mechanisms of Z-scheme photocatalysis through experimental and theoretical approaches based on density functional theory.
Photocatalytic water splitting is considered one of the most important and appealing approaches for the production of green H-2 to address the global energy demand. The utmost possible form of artificial photosynthesis is a two-step photoexcitation known as Z-scheme, which mimics the natural photosystem. This process solely relies on the effective coupling and suitable band positions of semiconductors (SCs) and redox mediators for the purpose to catalyze the surface chemical reactions and significantly deter the backward reaction. In recent years, the Z-scheme strategies and their key role have been studied progressively through experimental approaches. In addition, theoretical studies based on density functional theory have provided detailed insight into the mechanistic aspects of some breathtakingly complex problems associated with hydrogen evolution reaction and oxygen evolution reaction. In this context, this critical review gives an overview of the fundamentals of Z-scheme photocatalysis, including both theoretical and experimental advancements in the field of photocatalytic water splitting, and suggests future perspectives.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据