4.8 Review

Understanding Heterogeneities in Quantum Materials

期刊

ADVANCED MATERIALS
卷 35, 期 27, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202106909

关键词

coherence; defects; heterogeneities; layered materials; quantum emitters; quantum materials; topological materials

向作者/读者索取更多资源

This article reviews the recent progress in understanding the role of heterogeneities in quantum materials and their effects on quantum behaviors. The authors assess three interconnected areas, including revealing the degrees of freedom of heterogeneities, understanding their impact on quantum states, and controlling heterogeneities for new quantum functions.
Quantum materials are usually heterogeneous, with structural defects, impurities, surfaces, edges, interfaces, and disorder. These heterogeneities are sometimes viewed as liabilities within conventional systems; however, their electronic and magnetic structures often define and affect the quantum phenomena such as coherence, interaction, entanglement, and topological effects in the host system. Therefore, a critical need is to understand the roles of heterogeneities in order to endow materials with new quantum functions for energy and quantum information science applications. In this article, several representative examples are reviewed on the recent progress in connecting the heterogeneities to the quantum behaviors of real materials. Specifically, three intertwined topic areas are assessed: i) Reveal the structural, electronic, magnetic, vibrational, and optical degrees of freedom of heterogeneities. ii) Understand the effect of heterogeneities on the behaviors of quantum states in host material systems. iii) Control heterogeneities for new quantum functions. This progress is achieved by establishing the atomistic-level structure-property relationships associated with heterogeneities in quantum materials. The understanding of the interactions between electronic, magnetic, photonic, and vibrational states of heterogeneities enables the design of new quantum materials, including topological matter and quantum light emitters based on heterogenous 2D materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据