4.8 Article

Light-Driven Micromotors to Dissociate Protein Aggregates That Cause Neurodegenerative Diseases

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 32, 期 1, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202106699

关键词

BiVO; (4); human serum albumin fibrils; microrobots; self-propulsion; thioflavin T fluorescence assays

资金

  1. Ministry of Education, Youth and Sports (Czech Republic) under ERC CZ program [LL2002]
  2. MEYS CR [LM2018110]
  3. Advanced Functional Nanorobots - EFRR [CZ.02.1.01/0.0/0.0/15_003/0000444]

向作者/读者索取更多资源

Microrobots are seen as attractive mobile carriers for clinical therapies, with high expectations for their ability to navigate autonomously and perform specific tasks. In this study, self-propelled light-driven single-component micromotors based on concave BiVO4 microspheres are used to disaggregate protein fibrils by generating reactive oxygen species (ROS) on-the-fly. This promising application could potentially be extended to photodynamic therapies for conditions such as lung or skin cancer.
Nowadays, microrobots are considered appealing mobile carriers for clinical therapies. In this sense, high expectations against unmet medical challenges have been created around microswimmers that combine autonomous navigation with enhanced abilities to perform specific tasks. Neurodegenerative disorders are incurable diseases that have a huge impact on the quality of life for millions of people. To date, protein disaggregation (i.e., dissociation of mature protein fibrils on the origin of the given illness) has been discussed as targeted therapy by means of nonautonomous nanoparticles. Here, self-propelled light-driven single-component micromotors based on concave BiVO4 microspheres are used to disaggregate protein fibrils. Efficient disaggregation is proved to be promoted by the micromotors' intrinsic on-the-fly generation of reactive oxygen species (ROS). Moreover, the helical trajectories observed for these single-component micromotors are thought to be probably behind the uniform distribution of ROS, leading to enhanced protein dissociation. This conceptually promising application of light-driven micromotors with efficient photocatalytic ROS production and distribution can be extended to alternative ROS-based photodynamic therapies against lung or skin cancer, among others.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据