4.6 Article

Electrospun BiFeO3 Nanofibers for Vibrational Energy Harvesting Application

期刊

ADVANCED ENGINEERING MATERIALS
卷 24, 期 7, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adem.202101394

关键词

BFO; electrospinning; energy harvesting; lead-free materials; perovskite oxide; piezoelectric nanogenerators

资金

  1. European Union's Horizon 2020 research and innovation program (ITN ENHANCE) under the Marie Sklodowska-Curie grant [722496]
  2. Alexander von Humboldt Foundation
  3. German Federal Ministry of Education and Research (BMBF)
  4. Projekt DEAL

向作者/读者索取更多资源

The interplay between the piezoelectric properties and morphology of Bismuth ferrite (BiFeO3, BFO) nanostructures is exploited for vibrational energy harvesting application. High-performance flexible nanogenerators based on BFO nanofibers are fabricated through cost-effective and energy-efficient electrospinning technique, achieving a high peak-to-peak voltage output and average output power density.
Bismuth ferrite (BiFeO3, BFO) has found application in a wide range of fields owing to its fascinating multiferroic properties. Herein, the interplay between the piezoelectric properties and morphology of BFO nanostructures is exploited for vibrational energy harvesting application by tailoring BFO to a high aspect ratio and high surface area nanofiber morphology. This work demonstrates a facile pathway for the fabrication of high-performance flexible nanogenerators, based on BFO nanofibers, from a cost-effective and energy-efficient electrospinning technique. The X-ray diffraction data of calcined fibers confirm the formation of noncentrosymmetric crystalline perovskite phase. The morphological characterization by scanning electron microscopy shows a compact anisotropic nanofibrous morphology. For the fabrication of nanogenerators, BFO nanofibers are embedded in a piezoactive polymer matrix (polyvinylidenfluoride [PVDF]). As-fabricated BFO/PVDF composite nanogenerators produce a high peak-to-peak voltage output of 7.6 V, with an average output power density of 185 +/- 106 nW cm(-2) upon periodic application of force through finger knocking.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据