4.7 Article

Role of local chemical fluctuations in the shock dynamics of medium entropy alloy CoCrNi

期刊

ACTA MATERIALIA
卷 221, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2021.117380

关键词

Shock response; Defect evolution; Lattice distortion; Chemical short-range order; Medium entropy alloy

向作者/读者索取更多资源

Molecular dynamics simulations were conducted to investigate the shock responses and deformation mechanisms in single crystalline and nanocrystalline microstructures of the medium entropy alloy CoCrNi. The effects of lattice distortion and chemical short-range order on shock wave propagation, defect evolution, and cavitation process were explored. Results showed that lattice distortion aids in the formation of nanotwins by slowing down dislocation propagation, while a higher degree of chemical short-range order reduces the chances for nanotwinning due to increased stacking faults annihilation.
In this work, molecular dynamics simulations are conducted to investigate the shock responses and corresponding deformation mechanisms in single crystalline (SC) and nanocrystalline (NC) microstructure of the medium entropy alloy (MEA) CoCrNi. The effects of lattice distortion (LD) and chemical short-range order (CSRO) on the shock wave propagation, defect evolution, and the cavitation process are explored to distinguish the unique shock properties of MEA. The results reveal an anomalous anisotropy in the Hugoniot elastic limit different from that seen in pure FCC metals since LD reduces the barrier for Shockley partial (SP) formation but increases the resistance for SP propagation. With sufficient dislocations nucleated in the first shock compression stage, LD aids in the formation of nanotwins by slowing down dislocation propagation in the following release and tension stages. However, because a higher degree of CSRO increases the average intrinsic stacking fault energy above that of the random material, more stacking faults annihilate in the release stage, reducing the chances for nanotwinning. We show that voids prefer to nucleate at Ni segregation sites (with high CSRO) due to the large hydrostatic tensile strain created by the lattice mismatch between the neighboring Ni and CoCr regions, and moreover, the nucleation event favors the grain boundary during spallation in NCs. (c) 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据