4.7 Article

Microstructural effects on the dynamical relaxation of glasses and glass composites: A molecular dynamics study

期刊

ACTA MATERIALIA
卷 220, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2021.117293

关键词

Metallic glasses; Composites; Nanoglass; Dynamic mechanical spectrum; Interfaces

资金

  1. China Scholarship Council (CSC)
  2. NSFC [12072344, 11790292]
  3. Youth Innovation Promotion Association of Chinese Academy of Sciences [2017025]

向作者/读者索取更多资源

Different microstructures, such as nanoglasses, crystal-glass nanolaminates, and glasses with spherical crystalline inclusions, can affect the structural relaxations and mechanical energy dissipation of metallic glasses. The fraction and spatial homogeneity of hard icosahedral environments matter in a fully glassy system, while the storage modulus and loss moduli are determined by the microstructure and loading conditions. Atomistic processes leading to these evolutions are discussed, with remaining open questions highlighted.
One way to increase the ductility of metallic glasses is to induce heterogeneous microstructures, as for example in nanoglasses and crystal-glass composites. The heterogeneities have important consequences not only on the development of shear bands, but also on the structural relaxations in the glass phase. Experiments using dynamic mechanical spectroscopy (DMS) have been conducted, but an atomic-scale picture is still lacking. Here we apply DMS within molecular dynamics simulations to a classical CuZr metallic glass to study how structural relaxations and mechanical energy dissipation are affected by different microstructures, including nanoglasses, crystal-glass nanolaminates and glasses with spherical crystalline inclusions. We find that in a fully glassy system, not only the fraction but also the spatial homogeneity of hard icosahedral environments matter. When hard crystalline particles are introduced, the storage modulus simply results from volumetric averages consistent with the classical Voigt and Reuss bounds. On the other hand, loss moduli are much more complex and can be smaller or larger than in a pure glass depending on the microstructure and loading condition. Atomistic processes leading to these evolutions are discussed and remaining open questions are highlighted. (c) 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据