4.8 Article

pH/Glucose Dual Responsive Metformin Release Hydrogel Dressings with Adhesion and Self-Healing via Dual-Dynamic Bonding for Athletic Diabetic Foot Wound Healing

期刊

ACS NANO
卷 16, 期 2, 页码 3194-3207

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.1c11040

关键词

diabetic foot; pH/glucose dual responsive hydrogels; self-healing hydrogels; adhesive hydrogels; athletic wounds

资金

  1. National Natural Science Foundation of China [51973172]
  2. Natural Science Foundation of Shaanxi Province [2020JC-03, 2019TD-020]
  3. State Key Laboratory for Mechanical Behavior of Materials
  4. World-Class Universities (Disciplines) and Characteristic Development Guidance Funds for the Central Universities
  5. Fundamental Research Funds for the Central Universities
  6. Opening Project of the Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University [2019LHM-KFKT008]

向作者/读者索取更多资源

A dual-responsive hydrogel dressing was constructed for the treatment of type II diabetic foot ulcers and shown to promote wound healing in a rat model. The addition of metformin and graphene oxide further enhanced wound repair.
In view of the lack of a specific drug-sustained release system that is responsive to chronic wounds of the type II diabetic foot, and the demands for frequent movement at the foot wound, pH/glucose dual-responsive metformin-released adhesion-enhanced self-healing easy-removable antibacterial antioxidant conductive hemostasis multifunctional phenylboronic acid and benzaldehyde bifunctional polyethylene glycol-co-poly(glycerol sebacic acid)/dihydrocaffeic acid and l-arginine cografted chitosan (PEGS-PBA-BA/CS-DA-LAG, denoted as PC) hydrogel dressings were constructed based on the double dynamic bond of the Schiff-base and phenylboronate ester. It was further demonstrated that the PC hydrogel promotes wound healing by reducing inflammation and enhancing angiogenesis in a rat type II diabetic foot model. In addition, the addition of metformin (Met) and graphene oxide (GO), as well as their synergy, were confirmed to better promote wound repair in vivo. In summary, adhesion-enhanced self-healing multifunctional PC/GO/Met hydrogels with stimuli-responsive metformin release ability and easy removability have shown a promoting effect on the healing of chronic athletic diabetic wounds and provide a local-specific drug dual-response release strategy for the treatment of type II diabetic feet.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据