4.8 Article

Mechanofluorescent Polymer Brush Surfaces that Spatially Resolve Surface Solvation

期刊

ACS NANO
卷 16, 期 2, 页码 3383-3393

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.2c00277

关键词

polymer brushes; mechanofluorescence; fluorescence lifetime imaging microscopy; poly(N-isopropylacrylamide); co-nonsolvency effects; droplet wetting

资金

  1. Alexander von Humboldt foundation
  2. Deutsche Forschungsgemeinschaft (DFG) [422852551, AU321/10-1, FE600/32-1, UH121/3-1, SO 277/12-1, 265191195-SFB1194]

向作者/读者索取更多资源

This study reports on ultrathin polymer brush surfaces integrated with single fluorophores, which exhibit changing fluorescence properties based on polymer conformation. Fluorescence lifetime imaging microscopy is used to reveal spatial details on polymer brush conformational transitions across complex interfaces and enables high-resolution surface-based sensing of stimuli-induced phase transitions of polymer brushes.
Polymer brushes, consisting of densely end-tethered polymers to a surface, can exhibit rapid and sharp conformational transitions due to specific stimuli, which offer intriguing possibilities for surface-based sensing of the stimuli. The key toward unlocking these possibilities is the development of methods to readily transduce signals from polymer conformational changes. Herein, we report on single-fluorophore integrated ultrathin (<40 nm) polymer brush surfaces that exhibit changing fluorescence properties based on polymer conformation. The basis of our methods is the change in occupied volume as the polymer brush undergoes a collapse transition, which enhances the effective concentration and aggregation of the integrated fluorophores, leading to a self-quenching of the fluorophores' fluorescence and thereby reduced fluorescence lifetimes. By using fluorescence lifetime imaging microscopy, we reveal spatial details on polymer brush conformational transitions across complex interfaces, including at the air-water-solid interface and at the interface of immiscible liquids that solvate the surface. Furthermore, our method identifies the swelling of polymer brushes from outside of a direct droplet (i.e., the polymer phase with vapor above), which is controlled by humidity. These solvation-sensitive surfaces offer a strong potential for surface-based sensing of stimuli-induced phase transitions of polymer brushes with spatially resolved output in high resolution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据