4.8 Article

Usability Identification Framework and High-Throughput Screening of Two-Dimensional Materials in Lithium Ion Batteries

期刊

ACS NANO
卷 15, 期 10, 页码 16469-16477

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.1c05920

关键词

two-dimensional materials; lithium ion battery; high-throughput screening; usability identification; first-principles calculations

资金

  1. National Natural Science Foundation of China (NSFC) [52176078, 51636002, 51827807, 52130602]

向作者/读者索取更多资源

This study expands the database of 2D materials for lithium ion batteries, proposes an identification theory, establishes a usability identification framework, and predicts 215 2D materials usable for lithium ion batteries. This work enriches the choices of 2D materials, providing a general methodology to assess the usability of unexploited 2D materials.
Two-dimensional materials (2D materials) show great advantages in high-performance lithium ion battery materials due to the inherent ion channels and rich ion sites. Unfortunately, rare 2D materials own all desired attributes to meet complex scenarios. Further enriching the 2D materials database for lithium ion battery use is of high interest. In this work, we extend the list of candidates for lithium ion batteries based on a 2D material identification theory. More importantly, a usability identification framework leveraging the competitive mechanism between the adsorbability and reversibility of ions on a 2D material is proposed to assist the deeper screening of practicable 2D materials. As a result, 215 2D materials including 158 anodes, 21 cathodes, and 36 solid electrolytes are predicted to be practicable for lithium ion battery use. The comparison between the identified 2D materials with the known ones verifies the reliability of our strategy. This work significantly enriches the choices of 2D materials to satisfy the various battery demands and provides a general methodology to assess the usability of unexploited 2D materials for lithium ion batteries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据