4.8 Article

One-Step, Vacuum-Assisted Construction of Micrometer-Sized Nanoporous Silicon Confined by Uniform Two-Dimensional N-Doped Carbon toward Advanced Li Ion and MXene-Based Li Metal Batteries

期刊

ACS NANO
卷 16, 期 3, 页码 4560-4577

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.1c11098

关键词

silicon anodes; MXene; N-doped carbon; lithium-ion batteries; lithium-metal batteries

资金

  1. National Natural Science Foundation of China [51972198:62133007]
  2. State Key Program of National Natural Science of China [61633015]
  3. Project of the Taishan Scholar
  4. Shenzhen Fundamental Research Program [JCYJ20190807093405503]
  5. Taishan Scholars Program of Shandong Province [ts20190908]
  6. Young Scholars Program of Shandong University [2016WLJH03]

向作者/读者索取更多资源

This study developed a vacuum-assisted reactive carbon coating technique to produce micrometer-sized nanoporous silicon confined by homogeneous carbon nanosheets. The synthetic conditions were adjusted to control the structure and properties of the material, and the material exhibited excellent cycling performance and application potential in lithium-ion batteries.
With the advantages of a high theoretical capacity, proper working voltage, and abundant reserves, silicon (Si) is regarded as a promising anode for lithium-ion batteries. However, huge volume expansion and low electronic conductivity impede the commercialization of Si anodes. We devised a one-step, vacuum-assisted reactive carbon coating technique to controllably produce micrometer-sized nanoporous silicon confined by homogeneous N-doped carbon nanosheet frameworks (NPSi@NCNFs), achieved by the solid state reaction of a commercial bulk precursor and the subsequent evaporation of byproducts. The graphitization degree, C and N contents of the carbon shell, as well as the porosity of Si can be regulated by adjusting the synthetic conditions. A rational structure can mitigate volume expansion to maintain structural integrity, enhance electronic conductivity to facilitate charge transport, and serve as a protected layer to stabilize the solid electrolyte interphase. The NPSi@NCNF anode enables a stable cycling performance with 95.68% capacity retention for 4000 cycles at 5 A g(-1). Furthermore, a flexible 2D/3D architecture is designed by conjugating NPSi@NCNFs with MXene. Lithiophilic NPSi@NCNFs homogenize Li nucleation and growth, evidenced by structural evolutions of MXene@NPSi@NCNF deposited Li. The application potential of NPSi@NCNFs and MXene@NPSi@NCNFs is estimated via assembling full cells with LiNi0.8Co0.1Mn0.1O2 and LiNi0.5Mn1.5O4 cathodes. This work offers a method for the rational design of alloy-based materials for advanced energy storage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据