4.8 Review

Physical and Chemical Sensors on the Basis of Laser-Induced Graphene: Mechanisms, Applications, and Perspectives

期刊

ACS NANO
卷 15, 期 12, 页码 18708-18741

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.1c05806

关键词

graphene; laser-induced graphene; chemical sensors; physical sensors; sensing mechanisms; wearable sensors; functional modification; portable devices

资金

  1. National Natural Science Foundation of China [22172103, 21773009]

向作者/读者索取更多资源

Laser-induced graphene (LIG) is a rapidly produced, environmentally friendly material with a three-dimensional porous structure, widely utilized in sensors. However, there is still a lack of systematic review on its synthesis, sensing mechanisms, and applications.
Laser-induced graphene (LIG) is produced rapidly by directly irradiating carbonaceous precursors, and it naturally exhibits as a three-dimensional porous structure. Due to advantages such as simple preparation, time-saving, environmental friendliness, low cost, and expanding categories of raw materials, LIG and its derivatives have achieved broad applications in sensors. This has been witnessed in various fields such as wearable devices, disease diagnosis, intelligent robots, and pollution detection. However, despite LIG sensors having demonstrated an excellent capability to monitor physical and chemical parameters, the systematic review of synthesis, sensing mechanisms, and applications of them combined with comparison against other preparation approaches of graphene is still lacking. Here, graphene-based sensors for physical, biological, and chemical detection are reviewed first, followed by the introduction of general preparation methods for the laser-induced method to yield Photoelecto graphene. The preparation and advantages of LIG, sensing mechanisms, and the properties of different types of emerging LIG-based sensors are comprehensively reviewed. Finally, possible solutions to the problems and challenges of preparing LIG and LIG-based sensors are proposed. This review may serve as a detailed reference to guide the development of LIG-based sensors that possess properties for future smart sensors in health care, environmental protection, and industrial production.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据