4.8 Article

High-Density Anisotropy Magnetism Enhanced Microwave Absorption Performance in Ti3C2Tx MXene@Ni Microspheres

期刊

ACS NANO
卷 16, 期 1, 页码 1150-1159

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.1c08957

关键词

MXene; microwave absorption; magnetic microspheres; core-shell structure; anisotropy magnetism

资金

  1. National Natural Science Foundation of China [51725101, 11727807, 51672050, 61790581]
  2. Ministry of Science and Technology of China [2018YFA0209102]

向作者/读者索取更多资源

This study successfully assembled double-shell MXene@Ni microspheres using a spheroidization strategy to improve microwave absorption performance. The structure offers massive accessible active surfaces and the introduction of Ni nanospikes provides additional magnetic loss capacity.
Two-dimensional materials, especially the newly emerging MXene, have attracted numerous interests in the fields of energy conversion/storage and electromagnetic shielding/absorption. However, the inherently inevitable aggregation and absence of magnetic loss of MXene considerably limit its electromagnetic absorption application. The introduction of magnetic component and favorable structural engineering are the alternatives to improve the microwave absorption (MA) performance. Herein, we report a spheroidization strategy to assemble double-shell MXene@Ni microspheres, where the commonly lamellar MXene are reshaped into three-dimensional microspheres that provide the substrate for oriented growth of Ni nanospikes. Whereas this structural feature offers massive accessible active surfaces that effectively promote the dielectric loss ability, the introduction of magnetic Ni nanospikes enables the additional magnetic loss capacity. Benefiting from these merits, the synthesized 3D MXene@ Ni microspheres exhibit superior MA performance with the minimum reflection loss value of -59.6 dB at an ultrathin thickness (similar to 1.5 mm) and effective absorption bandwidth of 4.48 GHz. Moreover, the electron holography results reveal that the high-density anisotropy magnetism plays an important role in the improvement of MA performance, which provides an insight for the design of MXene-based materials as high-efficient microwave absorbers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据