4.8 Article

Basal-Plane-Activated Molybdenum Sulfide Nanosheets with Suitable Orbital Orientation as Efficient Electrocatalysts for Lithium-Sulfur Batteries

期刊

ACS NANO
卷 15, 期 10, 页码 16515-16524

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.1c06067

关键词

lithium-sulfur batteries; polysulfide redox reaction; electrocatalysis; shuttle effect; orbital orientation

资金

  1. National Natural Science Foundation of China [22078078]

向作者/读者索取更多资源

CNT@MoS2-B nanosheets, with B-doping, serve as catalysts to enhance Li-S batteries' performance by improving the reactivity of the MoS2 basal plane for Li2S formation and dissolution kinetics. The incorporation of B significantly increases the reactivity of MoS2 basal plane, leading to high rate capability and outstanding cycling stability of S/CNT@MoS2-B cathodes, offering fresh insights for developing effective catalysts to accelerate LiPS conversion.
Lithium-sulfur (Li-S) batteries are one of the most promising candidates for next-generation energy storage systems because of their high theoretical energy density. However, the shuttling behavior and sluggish conversion kinetics of lithium polysulfides (LiPSs) limit their practical application. Herein, B-doped MoS2 nanosheets are synthesized on carbon nanotubes (denoted as CNT@MoS2-B) to function as catalysts to boost the performance of Li-S batteries. The poor catalytic performance of the pristine MoS2 is revealed to be the result of unsuitable orbital orientation of the basal plane, which hinders the orbital overlap with sulfur species. B in CNT@MoS2-B is sp(3) hybridized, and it has a vacant sigma orbital perpendicular to the basal plane, which can maximize the head-on orbital overlap with S. The incorporation of B significantly increases the reactivity of MoS2 basal plane, which can facilitate the kinetics of Li2S formation and dissolution. With these merits, the S/CNT@MoS2-B cathodes deliver high rate capability and outstanding cycling stability, holding great promise for both scientific research and practical application. This work affords fresh insights for developing effective catalysts to accelerate LIPS conversion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据