4.8 Article

Engineered Thin Diffusion Layers for Anion-Exchange Membrane Electrolyzer Cells with Outstanding Performance

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 13, 期 43, 页码 50957-50964

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.1c14693

关键词

anion-exchange membrane; liquid/gas diffusion layers; water splitting; hydrogen production; electrolyzer cells; gas diffusion electrode

资金

  1. U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) under the Fuel Cell Technologies Office [DE-EE0008426, DE-EE0008423]
  2. U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) under the National Energy Technology Laboratory [DE-FE0011585]

向作者/读者索取更多资源

In this study, an engineered liquid/gas diffusion layer (LGDL) with tunable pore morphologies was reported to enable high performance of AEMECs. Compared to a commercial titanium foam, the engineered LGDL significantly improved interfacial contacts, mass transport, and activation of reaction sites in the electrolyzer, leading to outstanding performance. This study provides insight for designing advanced LGDLs for low-cost and high-efficiency AEMECs production.
Anion-exchange membrane electrolyzer cells (AEMECs) are one of the most promising technologies for carbon-neutral hydrogen production. Over the past few years, the performance and durability of AEMECs have substantially improved. Herein, we report an engineered liquid/gas diffusion layer (LGDL) with tunable pore morphologies that enables the high performance of AEMECs. The comparison with a commercial titanium foam in the electrolyzer indicated that the engineered LGDL with thin-flat and straight-pore structures significantly improved the interfacial contacts, mass transport, and activation of more reaction sites, leading to outstanding performance. We obtained a current density of 2.0 A/cm(2) at 1.80 V with an efficiency of up to 81.9% at 60 degrees C under 0.1 M NaOH-fed conditions. The as-achieved high performance in this study provides insight to design advanced LGDLs for the production of low-cost and high-efficiency AEMECs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据