4.8 Article

Artificial Synapse Based on a 2D-SnO2 Memtransistor with Dynamically Tunable Analog Switching for Neuromorphic Computing

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 13, 期 44, 页码 52822-52832

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.1c18329

关键词

two-dimensional oxide nanosheet; tin oxide; memtransistor; analog switching; neuromorphic computing

向作者/读者索取更多资源

The study demonstrates a new type of gate-tunable memristor based on 2D-SnO2 material, which can achieve complex neuromorphic learning. By regulating the gate bias, the gate-tunable synaptic device dynamically modulates the analog switching behavior, while exhibiting excellent linearity and an improved conductance change ratio. This new device opens up new opportunities for advancing neuromorphic device technology.
A new type of two-dimensional (2D) SnO2 semiconductor-based gate-tunable memristor, that is, a memtransistor, an integrated device of a memristor and a transistor, was demonstrated to advance next-generation neuromorphic computing technology. The polycrystalline 2D-SnO2 memristors derived from a low-temperature and vacuum-free liquid metal process offer several interesting resistive switching properties such as excellent digital/analog resistive switching, multistate storage, and gatetunability function of resistance switching states. Significantly, the gate tunability function that is not achievable in conventional two-terminal memristors provides the capability to implement heterosynaptic analog switching by regulating gate bias for enabling complex neuromorphic learning. We successfully demonstrated that the gate-tunable synaptic device dynamically modulated the analog switching behavior with good linearity and an improved conductance change ratio for high recognition accuracy learning. The presented gate-tunable 2D-oxide memtransistor will advance neuromorphic device technology and open up new opportunities to design learning schemes with an extra degree of freedom.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据