4.8 Article

3D Nano-heterostructure of ZnMn2O4@Graphene-Carbon Microtubes for High-Performance Li-Ion Capacitors

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 13, 期 44, 页码 52542-52548

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.1c13674

关键词

3D nano-heterogeneous structures; ZnMn2O4; polypyrrole carbon nanotubes; graphene; lithium-ion capacitors

资金

  1. National Natural Science Foundation of China [51902072, 22109033, 21673064, 51802059, 21905070, 22075062]
  2. Fundamental Research Funds for the Central Universities [HIT. NSRIF. 2019040, 2019041]
  3. Heilongjiang Touyan Team [HITTY-20190033]
  4. Heilongjiang Postdoctoral Fund [LBH-Z18066]
  5. State Key Laboratory of Urban Water Resource and Environment (Harbin Institute of Technology) [2020DX11]
  6. Nature Sciences and Engineering Research Council of Canada (NSERC)
  7. Canada Foundation for Innovation (CFI)
  8. BC Knowledge Development Fund (BCKDF)
  9. University of British Columbia (UBC)

向作者/读者索取更多资源

By incorporating polypyrrole carbon nanotubes between the cavities of 2D graphene, 3D-heterostructures ZMO@G-PNTs were designed, showing higher stability and rate capacity. Lithium-ion capacitors built with ZMO@G-PNTs as anode and activated carbon as cathode exhibited excellent energy density and cycling stability.
Heterostructures show great potential in energy storage due to their multipurpose structures and function. Recently, two-dimensional (2D) graphene has been widely regarded as an excellent substrate for active materials due to its large specific surface area and superior electrical conductivity. However, it is prone to self-aggregation during charging and discharging, which limits its electrochemical performance. To address the graphene agglomeration problem, we interspersed polypyrrole carbon nanotubes between the graphene cavities and designed three-dimensional (3D)-heterostructures of ZnMn2O4@rGO-polypyrrole carbon nanotubes (ZMO@G-PNTs), which demonstrated a high rate and cyclic stability in lithium-ion capacitors (LICs). Furthermore, the 3D porous structure provided more surface capacity contribution than 2D graphene, ultimately resulting in a better stability (333 mAh g(-1) after 1000 cycles at 1 A g(-1)) and high rate capacity (208 mAh g(-1) at 5 A g(-1)). Also, the mechanism of performance difference between ZMO@G-PNTs and ZMO@G was investigated in detail. Moreover, LICs built from ZMO@G-PNTs as an anode and activated carbon as a cathode showed an energy density of 149.3 Wh kg(-1) and a power density of 15 kW kg(-1) and cycling stability with a capacity retention of 61.5% after 9000 cycles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据