4.8 Article

Preparation of Three-Dimensional Mo2C/NC@MXene and Its Efficient Electromagnetic Absorption Properties

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 14, 期 5, 页码 7109-7120

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.1c19033

关键词

Mo2C; MXene nanosheets; electrostatic self-assembly; microwave absorber

资金

  1. National Natural Science Foundation of China [21975206, 21901206, 52063029]
  2. Fundamental Research Funds for the Central Universities [3102017jc01001]

向作者/读者索取更多资源

In this study, positively charged MoO3/PDA microspheres and negatively charged MXene nanosheets wrapped on the surface were obtained using the principle of electrostatic self-assembly. The effects of the ratio between MoO3/PDA and MXene nanosheets and loading amount on microwave absorption properties were investigated. The Mo2C/NC@MXene-2 sample obtained at a ratio of 3:1 and 25% loading showed the best absorption performance.
The positively charged MoO3/PDA microspheres are obtained by stacking and assembly of the sheet structure, and the negatively charged MXene nanosheets are wrapped on the surface through the principle of electrostatic self-assembly. After annealing, a nitrogen-doped carbon composite and a MXene-coated Mo2C wave absorber are obtained. The formation of the wrinkled surface provides a complex pore structure, and the multiple interface reflections between the nanosheets enhance the absorption performance. The existence of heterogeneous interfaces and the uneven distribution of space charges accumulated between the interfaces effectively reduce the minimum reflection loss (RLmin). This work explores the effects of the ratio between MoO3/PDA and MXene nanosheets and loading amount on the microwave absorption properties. Mo2C/NC@MXene-2 obtained when the ratio of the two is 3:1 has the best absorption performance under 25% loading. The RLmin is -59.36 dB, and the corresponding effective absorption bandwidth (EAB) is 4.6 GHz at 2.5 mm. This work expands the new applications of MXene-based and Mo2C-based materials and has a guiding significance for the design of electrostatic self-assembly materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据