4.7 Article

Generalized Deployable Elastic Geodesic Grids

期刊

ACM TRANSACTIONS ON GRAPHICS
卷 40, 期 6, 页码 -

出版社

ASSOC COMPUTING MACHINERY
DOI: 10.1145/3478513.3480516

关键词

geometric modeling; architectural geometry; fabrication; elastic gridshells; active bending; deployable structures

资金

  1. Vienna Science and Technology Fund (WWTF) [ICT15-082]

向作者/读者索取更多资源

The method proposed in this study approximates a given 3D surface by computing an elastic grid based on concepts from differential geometry, without the need for physical simulations. It allows for non-convex surface boundaries, creating complex and visually appealing shapes while ensuring the 2D grid remains perfectly planar.
Given a designer created free-form surface in 3d space, our method computes a grid composed of elastic elements which are completely planar and straight. Only by fixing the ends of the planar elements to appropriate locations, the 2d grid bends and approximates the given 3d surface. Our method is based purely on the notions from differential geometry of curves and surfaces and avoids any physical simulations. In particular, we introduce a well-defined elastic grid energy functional that allows identifying networks of curves that minimize the bending energy and at the same time nestle to the provided input surface well. Further, we generalize the concept of such grids to cases where the surface boundary does not need to be convex, which allows for the creation of sophisticated and visually pleasing shapes. The algorithm finally ensures that the 2d grid is perfectly planar, making the resulting gridshells inexpensive, easy to fabricate, transport, assemble, and finally also to deploy. Additionally, since the whole structure is pre-strained, it also comes with load-bearing capabilities. We evaluate our method using physical simulation and we also provide a full fabrication pipeline for desktop-size models and present multiple examples of surfaces with elliptic and hyperbolic curvature regions. Our method is meant as a tool for quick prototyping for designers, architects, and engineers since it is very fast and results can be obtained in a matter of seconds.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据