4.6 Article

Massive increase in the use of drifting Fish Aggregating Devices (dFADs) by tropical tuna purse seine fisheries in the Atlantic and Indian oceans

期刊

ICES JOURNAL OF MARINE SCIENCE
卷 74, 期 1, 页码 215-225

出版社

OXFORD UNIV PRESS
DOI: 10.1093/icesjms/fsw175

关键词

fish aggregating device; fishing effort; fishing strategy; GPS buoys; observers' data

资金

  1. European research project CECOFAD [MARE/2014/24]
  2. AMPED project of the French National Research Agency (ANR) [ANR-08-STRA-03]
  3. grant of France Filiere Peche

向作者/读者索取更多资源

Since the mid-1990s, drifting Fish Aggregating Devices (dFADs), artificial floating objects designed to aggregate fish, have become an important mean by which purse seine fleets catch tropical tunas. Mass deployment of dFADs, as well as the massive use of GPS buoys to track dFADs and natural floating objects, has raised serious concerns for the state of tropical tuna stocks and ecosystem functioning. Here, we combine tracks from a large proportion of the French GPS buoys from the Indian and Atlantic oceans with data from observers aboard French and Spanish purse seiners and French logbook data to estimate the total number of dFADs and GPS buoys used within the main fishing grounds of these two oceans over the period 2007-2013. In the Atlantic Ocean, the total number of dFADs increased from 1175 dFADs active in January 2007 to 8575 dFADs in August 2013. In the Indian Ocean, this number increased from 2250 dFADs in October 2007 to 10 300 dFADs in September 2013. In both oceans, at least a fourfold increase in the number of dFADs was observed over the 7-year study period. Though the relative proportion of natural to artificial floating objects varied over space, with some areas such as the Mozambique Channel and areas adjacent to the mouths of the Niger and Congo rivers being characterized by a relatively high percentage of natural objects, in no region do dFADs represent <50% of the floating objects and the proportion of natural objects has dropped over time as dFAD deployments have increased. Globally, this increased dFAD use represents a major change to the pelagic ecosystem that needs to be closely followed in order to assess its impacts and avoid negative ecosystem consequences.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据