4.2 Article

Self-Assembly of Crystalline Vesicles from Nonplanar pi-Conjugated Nanocycles

期刊

CCS CHEMISTRY
卷 3, 期 7, 页码 1851-1861

出版社

CHINESE CHEMICAL SOC
DOI: 10.31635/ccschem.020.202000373

关键词

cycloparaphenylene; vesicle; crystallization; cell internalization; supramolecule

资金

  1. Natural Science Foundation of China [51690153, 21720102005]
  2. National Key R&D Program of China [2017YFA0701301, 2017YFA0205401]
  3. Program for Changjiang Scholars and Innovative Research Team in University

向作者/读者索取更多资源

This study demonstrates that nonplanar pi-conjugated nanocycles can self-assemble into crystalline vesicles, with the size of vesicles being adjustable in solution. The vesicles show a remarkable ability to enter cells and kill cancer cells, making them potential candidates for effective anti-tumor agents.
There is a great demand for self-assembled carbon nanomaterials because of their importance in optoelectronics, biomaterials, and so forth. Herein, we report a novel type of self-assembled, nanoscale, crystalline vesicle from nonplanar pi-conjugated nanocycles. We designed four different structural [8]cycloparaphenylenes ([8]CPPs) molecules and demonstrated that these nonplanar pi-conjugated CPP nanocycles could self-assemble into multilamellar, crystalline vesicles in tetrahydrofuran (THF)/H2O mixed solvent. The critical driving force for the assembly of nanoscale CPP vesicles is crystallization and pi-pi interaction of nonplanar, nanocyclic molecules. The size of CPP vesicles could be regulated by changing water content, temperature, and concentration in solution. Our data demonstrate that these pi-conjugated nanocycle-based vesicles show a remarkable ability to enter cells in an energy- or temperature-independent manner and kill cancer cells. When the side groups of the CPP molecule were changed, the CPP vesicles showed a large difference in the cytotoxicity, and two CPP vesicles could effectively kill cancer cells as well as first-class antitumor agents.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据