4.5 Article

Oligophrenin-1 regulates number, morphology and synaptic properties of adult-born inhibitory interneurons in the olfactory bulb

期刊

HUMAN MOLECULAR GENETICS
卷 25, 期 23, 页码 5198-5211

出版社

OXFORD UNIV PRESS
DOI: 10.1093/hmg/ddw340

关键词

-

资金

  1. Telethon [GGP11116]
  2. Cariparo Foundation
  3. NANOmax

向作者/读者索取更多资源

Among the X-linked genes associated with intellectual disability, Oligophrenin-1 (OPHN1) encodes for a Rho GTPase-activating protein, a key regulator of several developmental processes, such as dendrite and spine formation and synaptic activity. Inhibitory interneurons play a key role in the development and function of neuronal circuits. Whether a mutation of OPHN1 can affect morphology and synaptic properties of inhibitory interneurons remains poorly understood. To address these open questions, we studied in a well-established mouse model of X-linked intellectual disability, i.e. a line of mice carrying a null mutation of OPHN1, the development and function of adult generated inhibitory interneurons in the olfactory bulb. Combining quantitative morphological analysis and electrophysiological recordings we found that the adult generated inhibitory interneurons were dramatically reduced in number and exhibited a higher proportion of filopodia-like spines, with the consequences on their synaptic function, in OPHN1 ko mice. Furthermore, we found that olfactory behaviour was perturbed in OPHN1 ko mice. Chronic treatment with a Rho kinase inhibitor rescued most of the defects of the newly generated neurons. Altogether, our data indicated that OPHN1 plays a key role in regulating the number, morphology and function of adult-born inhibitory interneurons and contributed to identify potential therapeutic targets.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据