4.3 Article

Hydrogel coated mesh decreases tissue reaction resulting from polypropylene mesh implant: implication in hernia repair

期刊

HERNIA
卷 20, 期 4, 页码 623-632

出版社

SPRINGER
DOI: 10.1007/s10029-016-1481-y

关键词

Hydrogel; Hernia repair; Polypropylene mesh; Foreign body reaction

类别

资金

  1. Frederick J. and Theresa Dow Wallace Fund of the New York Community Trust
  2. Grateful Foundation
  3. Simon and Eve Colin Foundation

向作者/读者索取更多资源

Use of polypropylene mesh (PPM) in hernia repair is associated with tissue reactivity. We examined, in a rat model, a novel non-biodegradable hydrogel coated PPM which may allow for decreased inflammation and a decreased foreign body reaction. Through a dorsal midline incision, a 2 cm x 2 cm section of PPM (either coated or uncoated) was placed on the fascial surface 1.5 cm from the incision on the dorsal wall of Sprague-Dawley rats. At 2 and 12 weeks after placement, the PPM and surrounding tissue were harvested. A board-certified dermatopathologist examined H&E stained slides for fibrosis and foreign body reaction. In addition, tissues were stained for apoptotic cells, oxidative damage, macrophages, fibroblasts, neovascularization and metalloproteases. At 2 and 12 weeks, there was a greater than 95 % decrease in foreign body giant cells in coated PPM samples compared to uncoated; fibrosis was decreased by 50 %. At 2 and 12 weeks, oxidative damage, fibroblast accumulation, apoptosis and macrophages were significantly decreased in coated PPM samples compared to uncoated PPM. These results demonstrate that a non-biodegradable hydrogel coating of PPM led to significant reduction in foreign body reaction, oxidative stress and apoptosis compared to uncoated PPM in vivo, and suggest that this coating could be clinically useful in hernia repair.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据