3.8 Article

Enhancement of sub-thermal neutron flux through cold polyethylene

期刊

JOURNAL OF NEUTRON RESEARCH
卷 23, 期 2-3, 页码 179-184

出版社

IOS PRESS
DOI: 10.3233/JNR-210010

关键词

Scattering kernels; cold polyethylene; sub-thermal neutron flux

资金

  1. Nuclear Criticality Safety Program - National Nuclear Security Administration
  2. Integrated University Program Graduate Fellowship

向作者/读者索取更多资源

Researchers at Rensselaer Polytechnic Institute (RPI) designed and constructed a polyethylene based cold moderation system to enhance neutron flux below 10 meV when coupled with the Enhanced Thermal Target (ETT) at the RPI Gaerttner LINAC. The final design yielded an increase in sub-thermal neutron flux (below 10 meV) by a factor of 4.5 for a moderator temperature of 37.5 K relative to the ETT alone. Further improvements are expected after minor modifications and adjustment in polyethylene temperature. This novel capability will be used to conduct total thermal neutron cross section measurements for different materials.
Total thermal neutron cross section measurements serve as the primary means of validation for thermal neutron scattering kernels, an important quantity for neutron transport calculations. In an effort to improve the quality of thermal neutron scattering kernels, researchers at Rensselaer Polytechnic Institute (RPI) designed and constructed a polyethylene based cold moderation system to enhance neutron flux below 10 meV when coupled with the Enhanced Thermal Target (ETT) at the RPI Gaerttner LINAC. The final design yielded an increase in sub-thermal neutron flux (below 10 meV) by a factor of 4.5 for a moderator temperature of 37.5 K relative to the ETT alone. A further increase to a factor of 6 is expected after a minor geometry modification and decrease in polyethylene temperature to 25 K. This novel capability will be used to conduct total thermal neutron cross section measurements from 0.0005-10 eV for different materials including moderator materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据