4.3 Article Proceedings Paper

Experimental and Numerical Investigation on Forced Convection in Circular Tubes With Nanofluids

期刊

HEAT TRANSFER ENGINEERING
卷 37, 期 13-14, 页码 1201-1210

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/01457632.2015.1112617

关键词

-

向作者/读者索取更多资源

In this paper an experimental and numerical study to investigate the convective heat transfer characteristics of fully developed turbulent flow of a water-Al2O3 nanofluid in a circular tube is presented. The numerical simulations are accomplished on the experimental test section configuration. In the analysis, the fluid flow and the thermal field are assumed axial-symmetric, two-dimensional, and steady state. The single-phase model is employed to model the nanofluid mixture and the k-E model is used to describe the turbulent fluid flow. Experimental and numerical results are carried out for different volumetric flow rates and nanoparticles concentration values. Heat transfer convective coefficients as a function of flow rates and Reynolds numbers are presented. The results indicate that the heat transfer coefficients increase for all nanofluids concentrations compared to pure water at increasing volumetric flow rate. Heat transfer coefficient increases are observed at assigned volumetric flow rate for nanofluid mixture with higher concentrations, whereas Nusselt numbers present lower values than the ones for pure water.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据