4.5 Review

Phycoremediation mechanisms of heavy metals using living green microalgae: physicochemical and molecular approaches for enhancing selectivity and removal capacity

期刊

HELIYON
卷 7, 期 7, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.heliyon.2021.e07609

关键词

Microalgae; Heavy metal; Phycoremediation; Mechanisms; Bioengineering

资金

  1. Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR)
  2. Regional University Centre of Interface (CURI), Sidi Mohamed Ben Abdellah University

向作者/读者索取更多资源

Heavy metal contamination in water bodies is a serious global environmental issue, with phytoremediation using microalgae being an effective solution. This study delves into the mechanisms of phycoremediation by microalgae and discusses the potential for improving removal efficiency and reducing costs through physicochemical and genetic engineering approaches.
Heavy metal (HM) contamination of water bodies is a serious global environmental problem. Because they are not biodegradable, they can accumulate in food chains, causing various signs of toxicity to exposed organisms, including humans. Due to its effectiveness, low cost, and ecological aspect, phycoremediation, or the use of microalgae's ecological functions in the treatment of HMs contaminated wastewater, is one of the most recommended processes. This study aims to examine in depth the mechanisms involved in the phycoremediation of HMs by microalgae, it also provides an overview of the prospects for improving the productivity, selectivity, and costeffectiveness of this bioprocess through physicochemical and genetic engineering applications. Firstly, this review proposes a detailed examination of the biosorption interactions between cell wall functional groups and HMs, and their complexation with extracellular polymeric substances released by microalgae in the extracellular environment under stress conditions. Subsequently, the metal transporters involved in the intracellular bioaccumulation of HMs as well as the main intracellular mechanisms including compartmentalization in cell organelles, enzymatic biotransformation, or photoreduction of HMs were also extensively reviewed. In the last section, future perspectives of physicochemical and genetic approaches that could be used to improve the phytoremediation process in terms of removal efficiency, selectivity for a targeted metal, or reduction of treatment time and cost are discussed, which paves the way for large-scale application of phytoremediation processes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据