4.8 Article

Recent progress in self-supported nanoarrays with diverse substrates for water splitting and beyond

期刊

MATERIALS TODAY NANO
卷 15, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.mtnano.2021.100120

关键词

Self-supported nanoarray; Substrate; Oxygen evolution reaction; Hydrogen evolution reaction; Overall water splitting

资金

  1. National Key R&D Program of China [2017YFB0406000]
  2. National Science Foundation of China [21875137, 51521004, 51420105009]
  3. Innovation Program of Shanghai Municipal Education Commission [2019-01-07-00-02-E00069]
  4. 111 Project [B16032]
  5. Center of Hydrogen Science and Joint Research Center for Clean Energy Materials at Shanghai Jiao Tong University

向作者/读者索取更多资源

Electrocatalytic water splitting is essential for hydrogen production, and self-supported nanoarray electrocatalysts have shown promise due to their larger active areas and lower overpotential. Recent advances in morphology and substrate design, as well as potential applications in CO2 reduction and nitrogen reduction reactions, have been systematically overviewed.
Electrocatalytic water splitting plays a paramount importance role in hydrogen production as a green renewable energy technology. Therefore, development of highly efficient and durable electrocatalysts for oxygen evolution reaction and hydrogen evolution reaction has gained great interest. Self-supported nanoarray electrocatalysts are attracting intense attention owing to larger active areas and lower reaction overpotential than the freestanding particles. Herein, the recent progress with regard to self-supported nanoarray electrocatalysts for water splitting is systematically overviewed, with a special focus on the morphology including 1D, 2D, and heterostructure nanoarrays, as well as the design and preparation strategy of the substrates. Furthermore, the challenges and opportunities of self-supported nanoarray electrocatalysts for water splitting are also discussed. Moreover, the promising application of self-supported nanoarray electrocatalysts in CO2 reduction reaction and nitrogen reduction reaction is also investigated. (C) 2021 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据