4.7 Article

Synthesis of 3D cerium oxide/porous carbon for enhanced electromagnetic wave absorption performance

期刊

ADVANCED COMPOSITES AND HYBRID MATERIALS
卷 4, 期 4, 页码 1398-1412

出版社

SPRINGERNATURE
DOI: 10.1007/s42114-021-00304-2

关键词

Porous carbon; Ceria; Oxygen vacancy; Dielectric loss; Electromagnetic wave absorption

资金

  1. National Natural Science Foundation of China [51407134]
  2. Natural Science Foundation of Shandong Province [ZR2019YQ24]
  3. Shandong Taishan Scholars Young Expert Program [tsqn202103057]
  4. China Postdoctoral Science Foundation [2016M590619]
  5. Qingchuang Talents Induction Program of Shandong Higher Education Institution (Research and Innovation Team of Structural-Functional Polymer Composites)

向作者/读者索取更多资源

CeO2/porous carbon composites exhibit enhanced electromagnetic wave absorption performance compared to pure porous carbon materials, showing promising potential for application in dealing with electromagnetic interference and pollution.
A series of CeO2/porous carbon composites are successfully prepared by hydrothermal method and subsequent pyrolysis method by using pine cone as biomass carbon source. Besides, the effect of cerium source on the electromagnetic (EM) parameters and electromagnetic wave (EMW) absorption performance of CeO2/porous carbon composites is further investigated. Additionally, the possible EMW absorption mechanism is also discussed. The results show that the CeO2/porous carbon composites show enhanced EMW absorption performance than pure porous carbon materials. Remarkably, with the cerium nitrate content of 0.6 mmol, the binary composites show a minimum reflection loss of - 56.04 dB with a thickness of 1.9 mm, and the effective absorption bandwidth is 5.28 GHz with a thickness of 2.1 mm. The remarkable electromagnetic wave absorbing property is attributed to the synergistic effect of porous carbon conductive framework and multiple interface polarization of heterointerfaces, as well as the oxygen vacancy defect caused by the unique structure of CeO2. This work could provide inspiration to broaden the application of CeO2 in dealing with the electromagnetic interference and pollution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据