4.4 Article

Inflammatory biomarkers in COVID-19-associated multisystem inflammatory syndrome in children, Kawasaki disease, and macrophage activation syndrome: a cohort study

期刊

LANCET RHEUMATOLOGY
卷 3, 期 8, 页码 E574-E584

出版社

ELSEVIER
DOI: 10.1016/S2665-9913(21)00139-9

关键词

-

资金

  1. Institutional Clinical and Translational Science Award [NIH/NCATS 1UL1TR001425]
  2. NIAMS/NIH [K08-AR072075, P30-AR070549, T32-AR069512]
  3. Deutsche Forschungsgemeinschaft (German Research Foundation) [DFG/448863690]

向作者/读者索取更多资源

Our findings demonstrate that MIS-C can be distinguished from Kawasaki disease primarily by elevated CXCL9 concentrations. Stratification of MIS-C patients by high or low CXCL9 concentrations suggests MAS-like pathophysiology in severe MIS-C cases, indicating new possibilities for diagnosis and treatment.
Background Multisystem inflammatory syndrome in children (MIS-C) is a potentially life-threatening hyperinflammatory syndrome that occurs after primary SARS-CoV-2 infection. The pathogenesis of MIS-C remains undefined, and whether specific inflammatory biomarker patterns can distinguish MIS-C from other hyperinflammatory syndromes, including Kawasaki disease and macrophage activation syndrome (MAS), is unknown. Therefore, we aimed to investigate whether inflammatory biomarkers could be used to distinguish between these conditions. Methods We studied a prospective cohort of patients with MIS-C and Kawasaki disease and an established cohort of patients with new-onset systemic juvenile idiopathic arthritis (JIA) and MAS associated with systemic JIA (JIA-MAS), diagnosed according to established guidelines. The study was done at Cincinnati Children's Hospital Medical Center (Cincinnati, OH, USA). Clinical and laboratory features as well as S100A8/A9, S100A12, interleukin (IL)-18, chemokine (C-X-C motif) ligand 9 (CXCL9), and IL-6 concentrations were assessed by ELISA and compared using parametric and non-parametric tests and receiver operating characteristic curve analysis. Findings Between April 30, 2019, and Dec 14, 2020, we enrolled 19 patients with MIS-C (median age 9.0 years [IQR 4.5-15.0]; eight [42%] girls and 11 [58%] boys) and nine patients with Kawasaki disease (median age 2.0 years [2.0-4.0]); seven [78%] girls and two [22%] boys). Patients with MIS-C and Kawasaki disease had similar S100 proteins and IL-18 concentrations but patients with MIS-C were distinguished by significantly higher median concentrations of the IFN gamma-induced CXCL9 (1730 pg/mL [IQR 604-6300] vs 278 pg/mL [54-477]; p=0.038). Stratifying patients with MIS-C by CXCL9 concentrations (high vs low) revealed differential severity of clinical and laboratory presentation. Compared with patients with MIS-C and low CXCL9 concentrations, more patients with high CXCL9 concentrations had acute kidney injury (six [60%] of ten vs none [0%] of five), altered mental status ( four [40%] of ten vs none [0%] of five), shock (nine [90%] of ten vs two [40%] of five), and myocardial dysfunction (five [50%] of ten vs one [20%] of five); these patients also had higher concentrations of systemic inflammatory markers and increased severity of cytopenia and coagulopathy. By contrast, patients with MIS-C and low CXCL9 concentrations resembled patients with Kawasaki disease, including the frequency of coronary involvement. Elevated concentrations of S100A8/A9, S100A12, and IL-18 were also useful in distinguishing systemic JIA from Kawasaki disease with high sensitivity and specificity. Interpretation Our findings show MIS-C is distinguishable from Kawasaki disease primarily by elevated CXCL9 concentrations. The stratification of patients with MIS-C by high or low CXCL9 concentrations provides support for MAS-like pathophysiology in patients with severe MIS-C, suggesting new approaches for diagnosis and management. Copyright (C) 2021 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据